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Abstract
A recent line of research in computer vision and graphics replaces
traditional discrete representations of objects, scene geometry, and
appearance with continuous functions parameterized by deep fully-
connected networks. These fully connected networks, referred to as
implicit neural representations (INRs), can be trained to represent any
geometric object by mapping input coordinates to structural infor-
mation at input locations. In contrast with other neural methods for
representing geometric objects, representation quality scales with
object complexity, independent of resolution. INRs have shown to
be very effective at representing images, videos, waveforms, distance
functions, radiance fields and various other types of data achieving
state-of-the-art results across a variety of tasks such as novel view
synthesis, solving differential equations and super-resolution.

INRs can be conditioned by concatenating latent codes to input
coordinates, modulating intermediate layer activations or generating
network parameters using a hypernetwork. This allows INRs to
function as a prior over a distribution of functions. At the time of
writing published applications of conditional INRs in the generative
domain are scarce, and to our knowledge no research has been done
applying conditional INRs in the field of audio synthesis.

In this work we compare different ways to parameterize and
condition INRs for the task of representing a distribution of audio
waveforms. Aiming to narrow down which have the right amount
of flexibility and carry the best inductive bias for modelling distribu-
tions of high-frequency one-dimensional continuous functions and
their perceptual qualities as audio.

We conclude that conditional INRs show great potential for rep-
resenting distributions of audio waveforms with perceptual- and
absolute fidelity. Previously proposed sinuisoidal INRs with FiLM
conditioning signifcantly outperform transposed convolution based
architectures with equal parameter budgets. However, the percep-
tual fidelity is inferior in more uniform datasets due to local wave-
form inconsistencies, a side effect of the high expressivity of these
models, which is amplified when optimizing hyperparameters in
short training runs.

To this extent we propose and validate methods for coping with
these limitations and overcoming the need to optimize hyperparam-
eters altogether in certain datasets. To foster reproducible research,
we published the source code of this research on GitHub.1 1 https://github.com/janzuiderveld/continuous-

audio-representations

https://github.com/janzuiderveld/continuous-audio-representations
https://github.com/janzuiderveld/continuous-audio-representations
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1
∣∣∣∣ Introduction

In generative modelling data is often represented by discrete arrays.
Images are represented by two-dimensional grids of RGB values,
3D scenes are represented by three-dimensional voxel grids and
audio as vectors of discretely sampled waveforms. However, it is
often the case that the true underlying signal is continuous. A recent
line of research in computer vision and graphics replaces traditional
discrete representations of objects, scene geometry, and appearance
with continuous functions parameterized by multilayer perceptrons
(MLPs).1 1 Chen and Hao Zhang, Learning Implicit

Fields for Generative Shape Modeling, 2019;
Mescheder et al., Occupancy Networks, 2019;
Mildenhall et al., NeRF, 2020; Park et al.,
DeepSDF, 2019; Sitzmann et al., Implicit
Neural Representations with Periodic Activation
Functions, 2020; Tancik et al., Fourier Features
Let Networks Learn High Frequency Functions in
Low Dimensional Domains, 2020.

These fully-connected networks, referred to as implicit neural rep-
resentations (INRs), can be trained to represent any geometric object
by mapping input coordinates to structural information at input
locations. In contrast with other neural methods for representing
geometric objects, the memory required to parameterize the object
is independent of resolution, and only scales with its complexity.
A corollary of this is that INRs have infinite resolution, as they can
be sampled at arbitrary spatial resolutions. INRs have shown to be
very effective at representing images, videos, waveforms, distance
functions, radiance fields and various other types of data achieving
state-of-the-art results across a variety of tasks such as novel view
synthesis2, solving differential equations3 and super-resolution.4 2 C. Liu et al., NeLF, 2021.

3 Sitzmann et al., Implicit Neural Represen-
tations with Periodic Activation Functions,
2020.
4 Xu et al., UltraSR, 2021.

To represent an audio waveform using an INR we define a func-
tion f : R1 → R1 mapping time coordinates to waveform amplitude
values, parameterized by a MLP. During training this network is
supervised on sampled amplitude values of the discrete waveform
to be represented.

Then, to apply the concept of INRs in the generative domain we
can frame generative modelling as learning a distribution of contin-
uous functions.5 This can be achieved by introducing conditioning 5 Dupont et al., Generative Models as Distribu-

tions of Functions, 2021.methods, for example by concatenating latent codes to input coor-
dinates6, modulating intermediate layer activations7 or generating 6 Chen and Hao Zhang, Learning Implicit

Fields for Generative Shape Modeling, 2019.
7 Chan et al., Pi-GAN, 2020.

network parameters using a hypernetwork.8 This allows INRs to
8 Sitzmann et al., Implicit Neural Represen-
tations with Periodic Activation Functions,
2020.

function as a prior over a distribution of functions.

In this work, we combine recent advances of INRs in generative
modelling and insights on the characteristics of sound represented
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in the time domain. We narrow down which conditioning methods
have the right amount of expressiveness and what INR parameter-
izations carry the best inductive bias for modelling distributions
of high-frequency one-dimensional continuous functions and their
perceptual qualities as audio. We compare these results to the per-
formance of transposed convolution based architectures designed
for this purpose in a discrete paradigm. More specifically, we aim to
answer the following research question:

Main research question

Are conditional INR’s suited for representing distributions of audio
waveforms when optimizing for perceptual- and absolute recon-
struction fidelity?

To answer the main research question, we address the following
subquestions:

Subquestions

◦ What latent embedding inference method is optimal for exploring
the representation characteristics specific to various conditional
INR parameterizations?

♢ Are previously proposed conditional INR parameterizations ca-
pable of representing a distribution of audio waveforms with
similar perceptual- and absolute reconstruction fidelity as trans-
posed convolution based architectures designed for this purpose?

□ Which conditional INR model hyperparameters9 are of significant 9 We consider the following INR model
hyperparameters:
– Conditioning methods
– Activation functions
– Latent mapping network depth
– Network shape

influence in perceptual- and absolute reconstruction fidelity when
representing different distributions of audio waveforms?

△ What are the main shortcomings of audio waveform representa-
tions learned by conditional INR’s, the process required to learn
these representations, and how can these shortcomings be ad-
dressed?

By answering these questions we hope to shed light on the po-
tential and amount of work still needed for applying implicit archi-
tectures in generative models for novel waveform synthesis with
competitive results, and by doing so guiding future research to
promising directions within this area.

We conclude that conditional INRs show great potential for rep-
resenting distributions of audio waveforms with perceptual- and
absolute fidelity. We summarize the key contributions of this work:

◦ Autodecoders are generally better suited for latent embedding
inference than autoencoders when exploring the representation
characteristics of INR parameterizations.
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♢ π-GAN, a previously proposed sinuisoidal INR with FiLM condi-
tioning, signifcantly outperforms previously proposed transposed
convolution based architecture with equal parameter budgets
in representing distributions of audio waveforms with absolute
fidelity.

♢ The perceptual fidelity of representations learned by π-GAN is
inferior in more uniform datasets due to local waveform inconsis-
tencies, a side effect of the high expressivity of sinuisoidal INRs
with FiLM conditioning.

□ Conditional INR model hyperparameters that reduce the expres-
siveness of the model can be beneficial in such scenarios. Decreas-
ing network depth while increasing network width, proved to be
a very effective adaptation generally improving fidelity.

□ INRs only conditioned via concatenation or without sinusoidal
nonlinearities in the input layer are incapable of representing any
high frequency content such as audio waveforms.

△ An important shortcoming of conditional sinuisoidal INRs is the
high sensitivity to activation scaling hyperparameters. Optimiz-
ing these in short training runs introduces expressivity pressure,
amplifying local waveform inconsistencies.

△ To this extent we make the following contributions:10 10 Our source code is
publicly available at
https://github.com/janzuiderveld/continuous-
audio-representations

1. We propose and validate post hoc methods for taming the ex-
pressivity of activation scaling hyperparameters found optimal
in short training runs, with success in two out of three tested
datasets.

2. We propose and validate a method for removing the need to
optimize activation scaling hyperparameters altogether. One
out of three datasets shows robust and significant perceptual
fidelity gains.

https://github.com/janzuiderveld/continuous-audio-representations
https://github.com/janzuiderveld/continuous-audio-representations




2
∣∣∣∣ Background

In this chapter, we recapitulate the foundations of which this work
is build and motivated upon, spanning across multiple fields of re-
search.

In Section 2.1 we outline intuitions about the perception and origin of
sound, and how oscillations are fundamental to its structure.

Then, in section 2.2 we introduce the reader to the current dominant
approaches in the field of audio synthesis and their associated induc-
tive biases and limitations.

Finally, in Section 2.3 we discuss Implicit neural representations
(INRs), a replacement for traditional discrete representations and
argue for their potential as a backbone for neural audio synthesis
architectures.

Synthesizing audio has many practical applications in creative
sound design for music and film. By using generative architectures,
it is possible for artists to “create”, explore, and morph between vast
amounts of sounds in intuitive ways.1 However, the high temporal 1 E.g. initialize latent embedding by

optimizing for some given sound, then
explore the space by taking steps in
the direction of other given sounds
or previously explored regions in the
latent space.

resolution of audio and our perceptual sensitivity to small irregu-
larities in waveforms make neural audio synthesis a complex and
computationally intensive task. As such, there is still significant
room for improvement in this research area.

Although neural networks are theoretically proven to be universal
function approximators in the asymptotic limit2, integrating induc- 2 Hornik et al., “Multilayer Feedforward

Networks Are Universal Approximators”,
1989.

tive biases aligned with the structure and patterns present in the
data domain, such as convolution3, recurrence4, and self-attention5 3 LeCun et al., “Backpropagation Applied to

Handwritten Zip Code Recognition”, 1989.
4 Sutskever et al., “Generating Text with
Recurrent Neural Networks”, n.d.
5 Vaswani et al., Attention Is All You Need,
2017.

has proven invaluable for the success of neural architectures. Such
constraints improve data efficiency and generalization by exploit-
ing symmetries in the structure of data, and can be essential when
scaling neural networks. However, current work in neural audio
synthesis does not show a lot of awareness in that regard.

With this in mind, we briefly outline intuitions how sound is
generated by nature, how we perceive it and how oscillations are
fundamental to its structure. Then, we elaborate on the current
dominant methods in neural audio synthesis and their inductive
biases. Finally, we argue that implicit neural representations with
periodic activation functions are a promising backbone for neural
audio synthesis architectures.
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2.1 The nature of sound
Practically everything in the universe, from planets to objects,
molecules and atoms, has a natural tendency to vibrate. Elastic
forces counteract the movement of particles, resulting in harmonic
oscillations between kinetic and potential energy. Neighboring
matter forms a propagating medium by synchronizing to these oscil-
lations. The amount of entrainment differs between frequencies and
depends on characteristics of the medium.

Accordingly, our auditory perception has evolved to be sensitive
to the energy of phase-consistent oscillations at frequencies that
are propagated by air molecules6. Consequently, human hearing is 6 Moerel et al., “Processing of Natural

Sounds in Human Auditory Cortex”, 2012;
Theunissen and Elie, “Neural Processing of
Natural Sounds”, 2014.

indifferent to the absolute air pressure or waveform amplitude at
specific moments in time, but is purely shaped by the presence of
frequencies, like audio representations in the frequency domain.

Images can also be represented in the frequency domain as a
combination of oscillations, but when doing so, energies do not cor-
respond to a specific objects, and as such image processing depends
less on frequency analysis7. Another way to illustrate structural 7 However, There are still applications

of Fourier analysis in image processing
such as image compression and denois-
ing, and optimizing correlation and
convolution operations.

differences between audio and images is by examining the most
important components for reconstructing samples using principal
component analysis. Figure 2.1 shows the first eight principal com-
ponents for patches from natural images and slices from speech8. 8 Donahue et al., Adversarial Audio Synthesis,

2019.This once again shows how periodic patterns are unusual in natural
images but a fundamental structure in audio.

Figure 2.1: The first eight principal
components for 5x5 patches from nat-
ural images and length-25 audio slices
from speech. While the principal com-
ponents of images generally capture
intensity, gradient, and edge character-
istics, those from audio form a periodic
basis that decompose the audio into
constituent frequency bands. Image
taken from Donahue et al., Adverserial
Audio Synthesis, 2019.

2.2 Neural audio synthesis backbones
Current dominant neural architectures for audio synthesis are based
on transposed convolutions or autoregressive architectures. Autore-
gressive architectures were the first models capable of generating
audio with reasonable quality9, and still produce competitive re- 9 Oord, Dieleman, et al., WaveNet, 2016.
sults, but they are significantly more computationally expensive to
train and sample and lack global latent structure. Transposed con-
volution based architectures have global latent conditioning and
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efficient parallel sampling, but synthesize less locally consistent
waveforms. Both architecture types can generate audio directly as
a waveform, but transposed convolution based architectures often
rely on spectrogram representations (visual representations of the
frequency spectrum over time), which in turn can be transformed to
waveforms.

Transposed convolution based architectures that generate wave-
forms directly with one-dimensional convolutions (e.g. SING10, 10 Défossez et al., SING, 2018.
Blow11 and WaveGAN12) must precisely align “wave packets”13 11 Serrà et al., Blow, 2019.

12 Donahue et al., Adversarial Audio Synthesis,
2019.
13 This term is borrowed from physics,
the learned kernels in transposed con-
volution based architectures look like
wave packets, but they are technically
not the same.

between different convolution steps. Since audio oscillates at many
frequencies, all with different periods relative to the stride of the
convolutions, these models must learn kernels to cover all varia-
tions in phase, which can be a heavy burden in scenarios with more
diverse samples.

GANSynth14 and SpecGAN15 are transposed convolution based 14 Engel, Agrawal, et al., GANSynth, 2019.
15 Donahue et al., Adversarial Audio Synthesis,
2019.

architectures that generate intermediate spectrograms. These mod-
els suffer from similar problems when transforming spectrograms
to waveforms due to the difficulty of modelling phase information.
Additionally, these models must also learn to inhibit artificial fre-
quencies introduced by windowing methods- and frequencies that
do not align with the Fourier basis functions used to transform the
original waveforms to spectrograms, also known as “spectral leak-
age”.

Autoregressive architectures solve fine-scale waveform coherence
by generating waveform amplitude samples one by one, causally. By
doing so, they are not constrained by the phase alignment problems
described in the last paragraph and are better at synthesizing locally
consistent waveforms in more diverse datasets. But this comes at
the cost of less global coherence16, higher memory requirements, 16 The total amount of amplitude

measurements in a few seconds of
audio is considered very long in the
paradigm of sequence modelling.

slow serial synthesis of amplitude samples and being restricted to
objective functions that are calculated per amplitude sample, such as
mean squared error (MSE).

Our perception of sound is indifferent to absolute amplitude
values and shaped purely by the presence of phase-consistent oscil-
lations. As a result, for any sound we perceive many waveform per-
turbations with similar spectral content exist. By optimizing models
to reproduce a small subset of the set of waveforms that we perceive
as identical17 the problem at hand is constrained in unnecessary 17 E.g. by restricting models to use a

limited set of phase matching ker-
nels or objective functions that are
calculated per amplitude sample.

ways.

We conclude that both transposed convolutions based- and au-
toregressive architectures, the dominant approaches in neural audio
synthesis as of today, show several shortcomings that impede learn-
ing in the problem at hand and lack clear inductive biases aligning
with the fundamental structure of the origin-, and our perception of
sound: oscillations.
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2.3 Implicit neural representations
Implicit neural representations (INRs) are neural networks used to
approximate low dimensional functions, which can be trained to
represent any geometric object by mapping input coordinates to
structural information at input locations.18 In traditional, discrete 18 See chapter 1 for an extended in-

troduction to the concept of implicit
neural representations, and chapter 3
for examples of proposed parameteri-
zation details and applications.

ways of representing objects, the required memory to store data
scales exponentially with its resolution. In contrast, for functional
representations, such as INRs, the memory required to parameterize
the signal is independent of spatial resolution, and only scales with
the complexity of the underlying signal.

Considering these properties, INRs do not seem ideal for repre-
senting audio waveforms. The memory scaling of discrete repre-
sentations relative to resolution are dependent on the dimension of
the data; Quadratically for images, cubically for voxel grids but only
linearly for waveforms. Additionally, audio waveforms appear as
complex signals; high frequency functions with much detail.

However, the realization that our perception and the origin of
sound relates strongly to its spectral content can offer a different per-
spective. Transforming a signal to the frequency domain amounts
to finding the composition of different harmonically related sinu-
soidal waves (the Fourier basis functions) present in the signal.
Audio waveforms (and especially musical ones) transformed to the
frequency domain appear significantly more simple. This indicates
that, with the right ingredients, or basis functions, audio waveforms
are not overly complex to construct. Under this assumption, func-
tional representations could create significant memory gains for
discrete waveform representations, even though they already scale
linearly with resolution.

Then, the question arises; what are the right ingredients to con-
struct audio waveforms? Bringing us back to the fundamental ques-
tion in arguably any machine learning research, what ingredients
create the right inductive biases for our problem?

In the case of an INR parameterized by a MLP, nonlinearities de-
termine the basis functions available for approximating functions.
This makes a strong case for the usage of MLPs with a sinusoidal
positional encoding of input coordinates in combination with ReLU
activation functions19 (ReLU P.E. MLPs), making the network oper- 19 Mildenhall et al., NeRF, 2020; Tancik

et al., Fourier Features Let Networks Learn
High Frequency Functions in Low Dimensional
Domains, 2020.

ate in a sparse Fourier basis, aligning with the oscillatory nature of
sound.

However, Sitzmann et al. show that due to the fact that ReLU
nonlinearities are piecewise linear, INRs parameterized by ReLU
P.E. MLPs are significantly less expressive, resulting in difficulties
when fitting high frequency components and corrupted represen-
tations of the Laplacian of signals. They propose to solve this by
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using sinusoidal activation functions throughout representation net-
works (SIRENs), and report significant gains in the MSE, or absolute
fidelity of learned waveform representations20, see figure 4.7. 20 Sitzmann et al., Implicit Neural Represen-

tations with Periodic Activation Functions,
2020.SIRENs are a deep composition of sinusoids with large activation

scaling, which show very chaotic behaviour. A piecewise linear
combination of sinusoids closely approximates how we perceive
sound. On the surface, this seems to provide a better inductive bias
for sound synthesis. Yet, in this work we focus predominantly on
SIRENs as they exhibit better empirical foundations compared to
ReLU P.E. MLPs for representing audio, and better expressiveness
when representing distributions of functions under feature-wise
linear modulation (FiLM) conditioning, as shown in the ablations
studies of π-GAN21, see table 4.1. 21 Chan et al., Pi-GAN, 2020.





3
∣∣∣∣ Related work

In this chapter, we give an overview of the development of implicit
neural representations, proposed approaches for applications in the
generative domain as conditional INRs and the development of neural
architectures for audio synthesis.

3.1 Generative implicit neural representations
The concept of implicit neural representations (INRs) was initially
proposed in 2007 by Stanley1. In this work the weights of very 1 Stanley, “Compositional Pattern Producing

Networks”, 2007.small INRs are sampled using an interactive evolutionary approach
guided by aggregated human feedback.2 2 Interestingly, this served as an experi-

ment highlighting the unique sense of
interestingness we possess as humans.
Stanley believes this sense has been
crucial for the rapid technological
development seen in our history, and
that it is a manifestation of the open-
endedness of evolution. He argues
that since evolution created biological
intelligence in an environment with
no explicit goals, this open-endedness
could also be a prerequisite for creating
general artificial intelligence.

3.1.1 The revival of implicit neural representations

After a long period of silence, in 2019, three different concurrent
works proposed using conditional INRs for representing a distri-
bution of three-dimensional shapes: IM-NET3, DeepSDF4 and Oc-

3 Chen and Hao Zhang, Learning Implicit
Fields for Generative Shape Modeling, 2019.
4 Park et al., DeepSDF, 2019.

cupancy Networks.5 All three papers report results of training on

5 Mescheder et al., Occupancy Networks, 2019.

point cloud datasets of a single category of shapes from ShapeNet6

6 Chang et al., ShapeNet, 2015.

and reconstructing unseen shapes within the same category, for dif-
ferent categories overlapping between the works. This is achieved
by employing the INR as a decoder in a variational autoencoder7

7 Kingma and Welling, Auto-Encoding
Variational Bayes, 2014.

(VAE).

However, each work reports results of different ShapeNet sets
(ShapeNet-Core8, ShapeNet, 3D-R2N29), and different encoders

8 Häne et al., Hierarchical Surface Prediction for
3D Object Reconstruction, 2017.
9 Choy et al., 3D-R2N2, 2016.

(PointNet10, unreported, extended PointNet). Ignoring these dif-

10 Qi et al., PointNet, 2017.

ferences and judging by metrics overlapping between the papers,
IM-NET and Occupancy Networks show similar quality, and both
outperform DeepSDF.11 DeepSDF is the only architecture trained 11 IM-NET uses roughly 4 × 106,

DeepSDF 2 × 106 and Occupancy
Networks 1 × 106 parameters.

to represent shape surfaces as signed distance functions, whereas
IM-NET and Occupancy networks do this by learning a decision
boundary.

IM-NET consists of a 6 layer ReLU MLP with an exponentially
shrinking amount of hidden units (starting at 2048) and is condi-
tioned by skip connections of the concatenated input and latent
vectors until the single last layer. Besides the previously mentioned
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VAE shape experiments, the authors also report experiments of IM-
NET in a generative adversarial network12 (GAN), and in both gen- 12 Goodfellow et al., Generative Adversarial

Networks, 2014.erative frameworks trained on MNIST13. In terms of diversity and
13 Deng, “The MNIST Database of Hand-
written Digit Images for Machine Learning
Research [Best of the Web]”, 2012.

reconstruction quality IM-NET outperforms transposed convolution
based counterparts in GAN setups for shapes, and in both generative
setups for MNIST.14 Results of IM-NET and a standard convolution 14 We compare IM-NET in our baseline

experiments, see section 4.6 for more
details.

based decoder in an AE setup trained on a translated objects image
dataset are shown in Fig 3.1. This result, among others, seems to
suggest a strong geometric prior in INRs.

Figure 3.1: CNN-based decoder vs.
IM-NET decoder trained in an autoen-
coder setup with CNN decoder on a
synthesized dataset of letter A’s on
white background.

DeepSDF consists of an 8 layer ReLU MLP, with 512 hidden units
throughout the network. Conditioned by concatenation, with a sin-
gle latent skip of concatenated input and latent vectors to the middle
of the network. Besides the previously mentioned VAE shape exper-
iments the authors report experiments in an autodecoder setup, a
latent embedding inference method proposed in the same paper.15

15 We do many experiments with this
method, see section 4.2 for more details

In reported experimental results of partially observed shapes in an
autodecoder setup DeepSDF consistently outperforms 3D-EPN16.

16 Dai et al., Shape Completion Using 3D-
Encoder-Predictor CNNs and Shape Synthesis,
2017.

Occupancy Networks consist of 5 “full pre-activation ResNet-
blocks”17 with conditional batch normalization18,19 as the condition- 17 He et al., Identity Mappings in Deep Residual

Networks, 2016.
18 De Vries et al., Modulating Early Visual
Processing by Language, 2017.
19 Conditional batch normalization is
practically identical to feature wise
linear modulation (FiLM), but applies
batch normalization as well. See
section 4.3.

ing mechanism. Each of these ResNet blocks consist of 3 fully con-
nected ReLU layers each, resulting in a total of 17 layers in the INR.
Besides the VAE shape experiments the authors report promising
results in single-image 3D reconstruction and voxel super-resolution.

3.1.2 Fourier encodings in implicit neural representations

Soon after, it became clear that INRs showed difficulties learning
high frequency signal components, relating to the phenomenon
of spectral bias20.21 Mildenhall et al.22 and Tancik et al.23 concur- 20 Rahaman, Baratin, Arpit, Draxler, Lin, F. A.

Hamprecht, et al., “On the Spectral Bias of
Neural Networks”, n.d.
21 Spectral bias is an implicit regular-
ization inherent to the learning process
of gradient descent, prioritizing low-
frequency modes in the function space.
Potentially an important factor in the
contrasting success of overparameter-
ized deep neural networks of with the
traditional notions of model complex-
ity.
22 Mildenhall et al., NeRF, 2020.
23 Tancik et al., Fourier Features Let Networks
Learn High Frequency Functions in Low
Dimensional Domains, 2020.

rently showed that INRs can overcome this by using a sinusoidal
positional encoding on the input features (ReLU P.E. MLPs). This
approach was extended by Sitzmann et al.24, who proposed an im-

24 Sitzmann et al., Implicit Neural Represen-
tations with Periodic Activation Functions,
2020.

plementation of INRs with only sinusoidal activation functions.
These networks, Sinusoidal representation networks (SIRENs) show
significantly more expressivity than ReLU P.E. MLPs, outperforming
the latter in representing audio waveforms, see figure 4.7.

Neural Radiance Field (NeRF)25 is the first work that used INRs

25 Mildenhall et al., NeRF, 2020.

as a radiance field, rendering novel viewpoints trained on images
with camera coordinates and viewing angles. The authors find that
in the basic implementation, optimizing a neural radiance field rep-
resentation for a complex scene does not converge to a sufficiently
high resolution representation and is inefficient in the required num-
ber of samples per camera ray. To alleviate this issue the authors
proposed using ReLU P.E. MLPs, being one of the first applying this
concept in a practical setup.

Generative Radiance Fields (GRAF)26 builds upon NeRF by 26 Schwarz et al., “GRAF: Generative
Radiance Fields for 3D-Aware Image
Synthesis”, n.d.
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introducing conditioning by concatenation in the architecture, mak-
ing it the first of its kind to be employed in a generative adversarial
setup. Instead of directly generating a 2D image from the input
noise zi, these methods produce an implicit 3D radiance field condi-
tioned on zi. This radiance field is rendered using volume rendering
to produce a 2D image from some camera pose . GRAF improved
on previous works in multiview consistence, but is still limited to
simple scenes of single objects.

Periodic Implicit GAN (π-GAN)27 replaces the radiance field 27 Chan et al., Pi-GAN, 2020.
representation and conditioning method in GRAF by a SIREN28 28 Sitzmann et al., Implicit Neural Represen-

tations with Periodic Activation Functions,
2020.

with FiLM29 conditioning. It improves significantly on GRAF and
29 Perez et al., FiLM, 2017.achieves state-of-the-art results in 3D aware image synthesis. In

their ablation studies, the authors show that FiLM conditioning
works especially well with SIRENs compared to conditioning by
concatenation.30 30 All of our experiments include

variations of π-GAN adapted for rep-
resenting a distribution functions with
a single input and output dimension.
See section 4.6.2 for more informa-
tion on π-GAN and section 4.3 for a
more thorough explanation of FiLM
conditioning.

3.1.3 Hypernetworks & implicit neural representations

Hypernetworks generate the parameters of another network.31,32

31 Ha et al., HyperNetworks, 2016.
32 For an introduction to hypernet-
works, see section 4.3.

Sitzmann et al.33 were one of the first to propose using hypernet-

33 Sitzmann et al., Implicit Neural Represen-
tations with Periodic Activation Functions,
2020.

works for generating INR parameters. The authors report experi-
ments on the reconstruction and generation of small (32 × 32) im-
ages of faces of the celebA dataset34 in a VAE setup using SIRENs.

34 Z. Liu et al., Deep Learning Face Attributes in
the Wild, 2015.

These experiments functioned as a proof of concept, and do not
show results competitive with other methods.

Anokhin et al.35 proposed an INR based method for image gen- 35 Anokhin et al., Image Generators with
Conditionally-Independent Pixel Synthesis, 2020.eration achieving state-of-the-art results on some image datasets,

but their method depends on learned pixel embeddings making the
output bound to a specific resolution.

Skorokhodov et al.36 are the first to report truly continuous image 36 Skorokhodov et al., Adversarial Generation
of Continuous Images, 2020.generation competitive with traditional transposed convolution

based decoders by using of a hypernetwork for generating INRs in
a GAN setup. Their proposed models utilize ReLU P.E. MLPs as the
generator backbone, and uses the discriminator of StyleGAN237. 37 Karras, Laine, Aittala, et al., “Analyz-

ing and Improving the Image Quality of
StyleGAN”, 2020.

Special features of their method important for its success include:

• Factorizing the output of their HyperNetwork. The authors cal-
culate the final weight matrix W ℓ by defining a shared parameter
matrix W ℓ

s that is multiplied by a low rank matrix W ℓ
h produced

by a HyperNetwork: W ℓ = W ℓ
s ⊙ σ

(
W ℓ

h

)
.

• Utilizing a multi-scale architecture which allows to efficiently
represent high-resolution images.38 38 Note that this does not relate to

progressive growing of the generator
or discriminator. This is not applied
in their method, while being crucial in
most state-ot-the-art image generation
GANs.

Dupont et al. (2021) extends previous INR generative adversarial
approaches by using a discriminator independent of resolution as
well. The authors achieve this by interpreting image pixels as point
clouds, and classifying them using the PointConv framework39,40. 39 Wu et al., PointConv, 2020.

40 The authors argue that PointConv
layers are suited because they are
translation equivariant and permuta-
tion invariant. They report that when
sampled on a regular grid, PointConv
networks closely match the perfor-
mance of regular CNNs.
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The authors mention that sine activations show strong potential
for usage in image generators, but they do not report experimental
results due to initialization difficulties associated with hypernetwork
generated weights.

3.2 Generative modelling of audio
Reasonable audio waveform synthesis was considered unachievable
for a long time, and the success of WaveNet41 in 2016 created a surge 41 Oord, Dieleman, et al., WaveNet, 2016.
in interest of audio waveform modelling. See fig. 3.2 for a chronolog-
ical overview of advances of raw audio synthesis in musical context.

Figure 3.2: Chronological overview
of advances of raw audio synthesis
in musical context. Different colors
represent different model architectures.

WaveNet42 is an autoregressive model based on PixelCNN43. It 42 Oord, Dieleman, et al., WaveNet, 2016.
43 Oord, Kalchbrenner, et al., Conditional
Image Generation with PixelCNN Decoders,
2016.

utilizes dilated causal convolutions to create waveforms. WaveNet
can generate novel and highly realistic audio clips due to its local
consistency, but the generated sounds can lack long-term consis-
tency, resulting in second-to-second variations. Another downside
of the autoregressive nature of the model is that it makes generation
computationally heavy.44 44 See section 2.2 for a more in-depth

discussion of autoregressive models
applied to neural audio synthesis.WaveNet autoencoder45 is WaveNet used as a decoder in an 45 Engel, Resnick, et al., Neural Audio Synthe-
sis of Musical Notes with WaveNet Autoencoders,
2017.

autoencoder setup by introducing a technique that enables the au-
toregressive decoder to be conditioned on temporal latent embed-
dings of timbre and pitch. This promotes global consistency and
allows better ways to control synthesis, e.g. interpolating between
latent embeddings to morph between and create new timbres. How-
ever, due to the temporally conditioned latent, synthesis can not be
guided in global structure.46 46 The NSYNTH dataset is also in-

troduced in this work, which we use
different subsets of. See section 5.5 for
more information.Symbol-to-Instrument Neural Generator (SING)47 is the first
47 Défossez et al., SING, 2018.successful attempt at applying transposed convolutions to audio

waveform generation, resulting in large computational effciency
gains, training and generation speed is roughly 32 and 2500 times
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faster than in WaveNet autoencoder. SING consists of a LSTM48 48 Hochreiter and Schmidhuber, “Long
Short-Term Memory”, 1997.whose output is fed to the transposed convolution based decoder

for waveform generation. The decoder is initially trained using an
autoencoder setup with a convolutional encoder. Afterwards, the
LSTM is trained to model the latent sequences conditioned on in-
strument, pitch, velocity49 and timbre. 49 In musical instrument terminology,

velocity refers to speed at which a
string is hit, determing it volume and
certain timbral characteristicsWaveGAN & SpecGAN50 are transposed convolution based
50 Donahue et al., Adversarial Audio Synthesis,
2019.

GANs generating audio waveforms (WaveGAN), and in the fre-
quency domain as a spectrogram (SpecGAN), which is transformed
to waveforms using Griffin-Lim inversion51. WaveGAN is the first 51 Griffin and Lim, “Signal Estimation from

Modified Short-Time Fourier Transform”,
1984.

successful attempt at applying GANs to audio waveform genera-
tion. Both models are minor modifications of DCGAN52 which was 52 Radford et al., Unsupervised Representation

Learning with Deep Convolutional Generative
Adversarial Networks, 2016.

breakthrough in the field of unsupervised image generation. Spec-
GAN did better covering the diversity of datasets, but WaveGAN
achieved better mean opinion scores, possibly caused by noise in-
duced by the lossy Griffin-Lim inversion. The synthesis speed of
these models improves upon those of SING due to the fully paral-
lelizable architecture.53 53 We compare WaveGAN in our base-

line experiments. For more information
on WaveGAN, see section 4.6.3





4
∣∣∣∣ Methodology

In this chapter we formalize the goal of our experiments, propose a
conceptual framework to unify the various considered variables in this
work, introduce all relevant concepts for our experimental section, and
arrange these within the proposed framework.

4.1 Problem formulation
We are interested in learning a distribution of continuous audio
waveform representations covering dataset D consisting of N dis-
cretely sampled waveforms. Waveforms in datasets D are repre-
sented by point sets Xi, consisting of M equally-spaced sampled
amplitude values from the corresponding continuous amplitude
functions yi : R1 → R1:

D = {Xi}N
i=1 , Xi =

{(
tj, aj

)
: aj = yi

(
tj
)}M

j=1 . (4.1)

Where tj are time coordinates, and aj are the corresponding ampli-
tudes or air pressure measurements at these time coordinates.

We represent audio waveforms by directly approximating ampli-
tude functions yi with continuous functions fi : R1 → R1, parameter-
ized by MLPs ϕi with sets of (learnable) parameters θi ∈ Θ.

Generalizing across represented functions fi, amounts to learning
a distribution over all sets of parameters {θi}N

i=1 , p(θ). We assume
parameter sets θi live in a low-dimensional manifold. To sample
parameter sets θi from p(θ), we define:

• A distribution over latent representations p(z), with z ∈ Z .

• A function mapping latent representations z to intermediate
latent representations w ∈ W , w = g(z) with g : Z → W ,
parameterized by a neural network ψ with learnable parameters
ξ, also known as the latent mapping network.

• A set of parameters α functioning as weights in ϕi shared between
representations.

• A function defining how intermediate latent representations w
influence shared parameters α to obtain θi, θi = c(wi, α), also
known as the conditioning method.



26 REPRESENTING AUDIO IN A DISTRIBUTION OF CONTINUOUS FUNCTIONS

The shared parameters α, latent mapping network ψ and condition-
ing method c together parameterize the conditional distribution
p(θ|z), allowing us to map latent representations to the parameter
space p(θ) = Ez[p(θ|Z = z)]. By sampling zi ∼ p(z), obtaining
wi by mapping zi through g(zi), conditioning shared parameters α

using wi and conditioning method c(wi, α), we obtain parameter set
θi for ϕi. Then, we can evaluate ϕi|θi at time coordinates tj to obtain
corresponding amplitude approximations âj:

zi ∼ p(z), θi = c(g(zi), α), âj = ϕi(tj|θi).

We optimize ϕi|θi to represent functions yi with perceptual- and
absolute fidelity.

Perceptual fidelity is measured by the metrics described in sec-
tion 5.8, absolute fidelity is measured by mean squared error (MSE)
between amplitudes aj and approximations âj. All metrics are ap-
plied on pairs of point sets sampled from functions fi(tj) and yi(tj)

at
{

tj
}M

j=1.

4.2 Latent embedding inference methods
In this work we aim to explore characteristics of decoders without
any restrictions regarding latent distributionp(z). However, this
still requires methods for embedding data in latent spaces. In our
baseline experiments (section 6.1) we compare the effects of using
autoencoders and autodecoders for inferring latent embeddings zi

during training on the perceptual- and absolute fidelity of recon-
structions fi.

Autoencoders have been around for a long time1 and are widely 1 Rumelhart et al., Parallel Distributed Process-
ing, 1986.used for representation learning as their bottleneck features tend to

form natural latent variable representations. Autoencoders consist of
an encoder network, which projects signals yi to a low dimensional
latent embedding zi, and a decoder network which generates the
corresponding reconstruction fi from the inferred latent embedding.

Autodecoders were introduced recently by Park et al.2. They 2 Park et al., DeepSDF, 2019.
have no encoder network. Latent embeddings zi are instead treated
as learnable parameters rather than inferred from observations at
training. By storing and updating intermediate latent embeddings zi

with backpropagated training errors during training the decoder can
function as an encoder, see fig. 4.1 for a schematic overview.

Benefits of autodecoders. Due to the direct optimization of la-
tent embeddings zi, autodecoders generally require less training
iterations to reconstruct datasets faithfully. Autodecoders are more
parameter efficient by not having an encoder, resulting in less opera-
tions per iteration and lower memory requirements during training.



METHODOLOGY 27

Figure 4.1: Schematic overview of
autoencoder and autodecoder architec-
tures. Figure adapted from Park et al.,
DeepSDF, 2019

Finally, autodecoders can alleviate incompatibility issues between
encoders and decoders. This is especially useful when dealing with
implicit neural representations (INRs), as these are less trivial to be
mirrored to use as an encoder3. 3 E.g. a transposed convolution based

decoder mirrors a regular convolution
based encoder. INRs are less trivial to
be mirrored to as an encoder as they
are agnostic to the number of observa-
tions and do not require observations
on a regular grid. However, good can-
didates for INR mirroring encoders
exist, such as PointNet.

Drawbacks of autodecoders. A major drawback of autodecoders
is that inferring latent embeddings of unseen samples after training
requires a multi-iteration optimization process. An encoder can
project any sample to a latent embedding in a single forward pass.
However, this is not relevant for the experiments in this work as we
do not evaluate architectures on reconstructing unseen samples.

Another drawback of autodecoders is that they do not easily
function as proper generative models. Park et al. have proposed to
enforce a distribution on latent embeddings by using an additional
variational objective, similar as in VAEs4. However, since autode- 4 Park et al., DeepSDF, 2019.
coders optimize samples and not parameters of a latent distribution,
this is unlikely to result in latent embeddings distributed according
to the enforced distibution5. Some works have proposed methods 5 Dupont et al., Generative Models as Distribu-

tions of Functions, 2021.which try to fix this, e.g. by enforcing a distribution on the gradients
optimizing latent embeddings6. However, since we do not enforce 6 Bond-Taylor and Willcocks, Gradient Origin

Networks, 2020.any structure on p(z) this is not relevant for our experiments.

4.3 Neural conditioning methods
As described in section 4.1, we aim to generalize across recon-
structed functions fi by learning a distribution over parameter sets
p(θ) used in MLPs ϕi parameterizing functions fi. Base parameters
α, latent mapping network ψ and conditioning method c together
parameterize conditional distribution p(θ|z) used to sample parame-
ter sets θi.

The amount of expressivity, (implicit) regularization and compu-
tational complexity differs strongly between conditioning methods c.
Which methods work best dependends on the parameterization of ϕi

and characteristics of dataset D. In current literature covering INRs
in generative settings, the following conditioning methods have seen
most exposure:

1. Generating weights of ϕi directly with another neural network, a
hypernetwork7. 7 Dupont et al., Generative Models as Distri-

butions of Functions, 2021; Sitzmann et al.,
Implicit Neural Representations with Periodic
Activation Functions, 2020; Skorokhodov
et al., Adversarial Generation of Continuous
Images, 2020.
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2. Concatenating latent embeddings zi to layer inputs in ϕi
8. 8 Chen and Hao Zhang, Learning Implicit

Fields for Generative Shape Modeling, 2019;
Park et al., DeepSDF, 2019; Schwarz et al.,
“GRAF: Generative Radiance Fields for
3D-Aware Image Synthesis”, n.d.

3. Applying FiLM9 to layer activations in ϕi.10

9 Perez et al., FiLM, 2017.
10 Chan et al., Pi-GAN, 2020; Mescheder
et al., Occupancy Networks, 2019.

Hypernetworks11 are considered the most flexible neural con-

11 Ha et al., HyperNetworks, 2016.

ditioning method. A latent mapping network ψ takes a latent em-
bedding zi as input and generates all parameters of a hyponetwork, in
our case ϕi

12. See figure 4.2 for a schematic overview. Framing the
12 A hypernetwork could also be
implemented to only output a subset
of parameters of a hyponetwork, as
described in equation 4.3, but to our
knowledge has never been shown to
improve results in the area of INRs.

typical implementation of the method in the conceptual framework
described in section 4.1 we note the following specifics:

1. Intermediate latent representations w have the same dimen-
siononality as θi.

2. Intermediate latent representations w directly function as pa-
rameters in ϕi. Resulting in the following conditioning function c:
θi = wi.

3. There are no learnable parameters α, shared between representa-
tions.

Figure 4.2: Schematic overview a hy-
pernetwork ψ. ψ takes zi as input to
generate the weights of a hyponetwork
ϕi . Figure adapted from Dupont et al.,
Generative Models as Distributions of
Functions, 2021.

Conditioning via concatenation can be considered the most ubiq-
uitous neural conditiong method, as it also describes architectures
that simply take latent codes as input (such as WaveGAN). Latent
embeddings zi are concatenated with the input vector xk of param-
eter matrix Wk of layer k in ϕi. Layer activation yk is then calculated
as follows:

yk = actk(Wk(xk||zi) + bk). (4.2)

Where actk is the activation function, bk the bias and || is the con-
catenation operator. See figure 4.3 for a schematic overview.

Concatenation as a special case of a hypernetwork. If we split
weight matrix Wk into two weight matrices, Whypo and Whyper, such
that Whyper contains only those weights in Wk that are applied to zi,
then layer activation yk is described as:

yk = actk(Whypo(xk) + Whyper(zi) + bk︸ ︷︷ ︸
bias

). (4.3)
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Figure 4.3: Schematic overview of
concatenation based conditioned layer.
Figure adapted from Perez et al., FiLM,
2017.

Thus, conditioning via concatenation can be viewed as a special case
of a hypernetwork, where the latent mapping network ψ is a single
affine layer that only predicts the biases of a single layer of a hy-
ponetwork ϕi, see figure 4.4. Framing the method in the conceptual
framework described in section 4.1 we note the following specifics:

1. Intermediate latent representations w have the same dimen-
siononality as the total amount of hidden units in conditioned
layers in θi.

2. Intermediate latent representations wk shift layer activations in
layer k of ϕi on top of bias controlled by shared parameters αb

k, as
described in equation 4.3. Resulting in the conditioning method c
shown in equation 4.4.

3. All other parameters θ in ϕi are parameterized by α, shared be-
tween representations.

Conditioning via concatenation applies the following condition-
ing method:

c : θb
k = c(wk, αb

k) = wk + αb
k. (4.4)

Figure 4.4: Schematic overview of con-
catenation based conditioning viewed
as a special case of a hypernetwork, one
that only controls bias. Figure adapted
from Perez et al., FiLM, 2017.

Feature-wise linear modulation (FiLM)13 proposes to apply 13 Perez et al., FiLM, 2017.
element-wise14 scaling and shifting of intermediate layer activations 14 In the case of convolutional networks,

FiLM is applied feature map wise.
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based on latent representations zi, as shown in equation 4.5 and fig-
ure 4.5. Framing the method in the conceptual framework described
in section 4.1 we note the following specifics:

1. Intermediate latent representations w have the dimensiononality
of twice the total amount of hidden units of conditioned layers in
θi, one half for scaling (wγ) and one half for shifting (wβ) layer
activations.

2. The conditioning function c is applied as shown in equation 4.5.
Note that parameters controlling bias θb

i are replaced by wβ
i .

3. All other parameters θ in ϕi are parameterized by α, shared be-
tween representations.

yk(xk) = actk(w
γ
k · Wkxk + wβ

k ). (4.5)

Where xk is the layer’s input, zi is a conditioning input, and γ and
β are functions outputting respectively scaling and shifting vectors
dependent on zi.

Figure 4.5: Schematic overview of
conditional scaling of features. Note
this is not a representation of equation
4.5, but a simplified scenario. Figure
adapted from Perez et al., FiLM, 2017.

FiLM is a unification of methods that modulate intermediate layer
activations, as in normalization layers introduced originally in batch
norm15. Other implementations include Dynamic Layer Norm for 15 Ioffe and Szegedy, Batch Normalization,

2015.speech recognition16, Conditional Instance Norm17, Adaptive In- 16 Kim et al., Dynamic Layer Normalization for
Adaptive Neural Acoustic Modeling in Speech
Recognition, 2017.
17 Ghiasi et al., Exploring the Structure of a
Real-Time, Arbitrary Neural Artistic Stylization
Network, 2017.

stance Norm18, and Conditional Batch Norm as used in Occupancy

18 Huang and Belongie, Arbitrary Style
Transfer in Real-Time with Adaptive Instance
Normalization, 2017.

networks19

19 Mescheder et al., Occupancy Networks, 2019.

Hypernetworks based approaches have no α. In concatenation-
and FilM based approaches we assume a significant amount of in-
formation of the conditional distribution p(θ|z) is encoded in the
shared parameters α. In hypernetwork based approaches there are
no shared weights α populating ϕi. Consequently, latent mapping
network ψ fully parameterizes conditional distribution p(θ|z). This
could be a preferable division of roles in more diverse function dis-
tributions. Besides the fact that having no shared parameters results
in having more diverse possibilites of functional representations ϕi,
this could also be argued by the observation that INRs have shown
impressive results for representing continuous functions, less so for
carrying information of a conditional distribution p(θ|z).
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Hypernetwork conditioned SIRENs. With preliminary results
being strongly in favor of SIRENs, we experimented with small
SIRENs generated by hypernetworks. But due to initialization dif-
ficulties we were not able to include hypernetwork based parame-
terizations of p(θ|z) in our reported experiments. The small size of
generated images in the hypernetwork conditioned SIREN exper-
iments of Sitzmann et al.20 and the general absence of SIRENs in 20 Sitzmann et al., Implicit Neural Represen-

tations with Periodic Activation Functions,
2020.

hypernetwork conditioned INR approaches seems to indicate this is
a challenging approach.

4.4 Nonlinearities in Implicit Neural Represen-
tations

Viewing MLPs as architectures learning set of basis functions, ReLU
P.E. MLPs learn functions in a sparse fourier basis making them the-
oretically well suited for representing audio. SIRENs learn functions
in a nested sinuisoidal basis. The behaviour of such a basis is less
well understood, but it is potentially suited for audio because of its
increased expressity compared to a sparse fourier basis.

Emperical results. Sitzmann et al.21 show the reconstruction per- 21 Sitzmann et al., Implicit Neural Represen-
tations with Periodic Activation Functions,
2020.

formance of SIRENs, ReLU MLPs and ReLU P.E. MLPs on different
signals. Comparing performance between SIRENs and ReLU P.E.
MLPs, in image reconstruction results shown in figure 4.6, ReLU P.E.
MLPs show comparable results to SIRENs (roughly a 20% decrease
in peak signal-to-noise ratio, PSNR), while the audio reconstruction
results shown in figure 4.7 are signifcantly more in favor of SIRENs
(roughly a 90% decrease in MSE).

Figure 4.6: Result of reconstruction 5
layer, 256 hidden unit INRs with dif-
ferent activation functions to an image.
Figure is taken from Sitzmann et al.,
Implicit Neural Representations with
Periodic Activation Functions, 2020.

4.5 Activation scaling in sinusoidal INRs

Sitzmann et al.22 introduce an activation scaling factor in every layer 22 Sitzmann et al., Implicit Neural Represen-
tations with Periodic Activation Functions,
2020.

of SIRENs, ω0:

yk(xk) = sin (ω0,k · Wkxk + b) , (4.6)

to match the frequency spectrum of signals to be represented. If
we consider a 2 layer SIREN, with no activations in the final layer,
represented signals live in a sparse Fourier basis, just like ReLU P.E.
MLPs. ω0 determines the range of frequencies that can be repre-
sented. When making the network deeper, we enter the domain of
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Figure 4.7: Result of reconstruction 5
layer, 256 hidden unit INRs with dif-
ferent activation functions to different
audio samples. Figure is taken from
Sitzmann et al., Implicit Neural Rep-
resentations with Periodic Activation
Functions, 2020.

nested sines, which behave similar to damped sines without any acti-
vation scaling. However, with higher ω0 values nested sines quickly
introduce more and higher frequency components.

Consequently, this hyperparameter has significant influence on
the inductive bias, smoothness and expressivity of SIRENs and
optimal values strongly depend on the data you want to represent
and the parameterization of ϕi. The image experiment shown in
figure 4.6 uses ω0 values of 30, while the audio experiment shown in
figure 4.7 uses ω0 values of 3000 in the first layer, and 30 in the later
ones.

ω0 optimization. Heuristics for optimal values of ω0 when repre-
senting sets of signals regarding set characteristics such as size and
diversity, and the parameterization of the conditional distribution
p(θ|z) is unexplored. Results are however very senstive to this hy-
perparameter. To account for this, we optimize ω0 magnitudes in all
relevant experiments. We minimize the search space by considering
only 2 groups of ω0 values: those in the first layer, and those in later
layers.

4.6 Baseline Decoders
In this section we view different previously proposed decoders com-
pared in the baseline comparison of our experiments through the
lens of the conceptual framework described in section 4.1. We com-
pare the differences in the parameterization of ϕi and the conditional
distribution p(θ|z), and argue why we decided to compare these ar-
chitectures. For a short introduction and their position among other
architectures, see chapter 3

4.6.1 IM-NET

IM-NET23 parameterizes ϕi as a 6 layer MLP with ReLU activation 23 Chen and Hao Zhang, Learning Implicit
Fields for Generative Shape Modeling, 2019.
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functions and a quadratically shrinking amount of hidden units
(starting at 2048). The conditional distribution p(θ|z) is parameter-
ized as follows:

• Input coordinates are concatenated to z. The latent mapping
network ψ takes this concatenated vector as input.

• ψ consists of 5 parralel affine layers with outgoing connections to
each layer input of ϕi, until the single last layer.

• Outputs of ψ, w, shift layer activations of conditioned layers in
ϕi, without replacing the bias parameters in ϕi. Resulting in the
following conditioning method c in layer k:
yk(x)k = actk(Wkxk + bk + wk) → θb

k = c(wk, αb
k) = wk + αb

k.

• Shared parameters α populate all weights native to ϕi.

See figure 4.8 for a schematic overview of the network structure as
provided by the authors.

Figure 4.8: Network structure of IM-
NET. Figure is taken from Chen and
Hao Zhang, Learning Implicit Fields
for Generative Shape Modeling, 2019

We considered including DeepSDF or Occupancy networks in-
stead for representing MLP based INRs with ReLU activations. The
reported experimental results of IM-NET, Occupancy networks
and DeepSDF indicate that IM-NET and Occupancy networks out-
perform DeepSDF. We decided to drop DeepSDF for its inferior
performance, and to continue with IM-NET to create a more diverse
comparison, as Occupancy networks’ conditioning method is similar
to that of π-GAN.

4.6.2 π-GAN

π-GAN24 is designed to produce implicit 3D radiance fields condi- 24 Chan et al., Pi-GAN, 2020.
tioned on zi. Ignoring the final parallel layer which integrates ray
directions, π-GAN parameterizes ϕi as an 8 layer MLP with sine
nonlinearities and a constant amount of hidden units (256). The
conditional distribution p(θ|z) is parameterized as follows:

• Latent mapping network ψ consists of a 3 layer MLP with ReLU
activations.
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• The conditioning mechansism c falls under the category of FiLM.
wγ and wβ vectors are shared between layers, drastically decreas-
ing the total size of w.

• wγ does not scale layer activations directly, but is summed
element-wise with the predefined activation scaling factor ω0

we know from SIRENs, resulting in the following conditioning
method c in layer k:25 25 Technical descriptions in the paper

of π-GAN seem to indicate that wγ
k

directly replaces ω0,k . This resulted
in instable behaviour in preliminary
experiments. E. Chan shared parts
of their implementation showing the
discussed conditioning method in
which wγ

k and ω0,k are summed.

θb
k , θω0

k = c(w, (αb
k, ω0,k)) = wβ

k + αb
k, wγ

k + ω0,k.

• Shared parameters α populate all weights native to ϕi.

See figure 4.9 for a schematic overview of the network structure as
provided by the authors.

Figure 4.9:
(a): Network structure of π-GAN.
(b): Schematic overview of a FiLMed-
SIREN layer. Figure is taken from Chan
et al., Pi-GAN, 2020.

The authors report the effects of replacing the SIREN based pa-
rameterization of ϕi with a ReLU P.E. MLP, and FiLM conditioning
with conditioning via concatenation. Changing either of these sig-
nificantly reduces FID scores, showing strong potential of combining
both methods. See figure 4.1.

Figure 4.1: FID scores on CelebA @
64 × 64, when comparing π-GAN
decoders with different activation
functions and conditioning methods.

4.6.3 WaveGAN

The WaveGAN decoder is based off of DCGAN26’s decoder, which 26 Radford et al., Unsupervised Representation
Learning with Deep Convolutional Generative
Adversarial Networks, 2016.

popularized usage of GANs for image synthesis. This decoder uses
transposed convolution to iteratively upsample low-resolution fea-
ture maps into a high-resolution image. In the WaveGAN decoder
this is modified to work with audio by replacing its two-dimensional
5×5 filters with one-dimensional filters of length 25, and changing
the stride factor for all convolutions from 2×2 to 4. These changes re-
sult in WaveGAN having the same number of parameters, numerical
operations, and output dimensionality as DCGAN. Because DCGAN
outputs 64×64 pixel images — equivalent to just 4096 audio sam-
ples — one additional layer is added to the model resulting in 16384
samples, slightly more than one second of audio at 16 kHz.
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Although it is not very intuitive, WaveGAN can be viewed as a
discrete parameterization of ϕi & p(θ|z) largely consisting of shared
parameters α. Latent mapping network ψ consists of a single fully
connected layer with ReLU nonlinearities, its output, intermedi-
ate latent representations w are reshaped in 128 one-dimensional
feature maps of length 16 serving as input maps for the first convo-
lutional layer.

4.7 Objective function
In our experiments we use MSE with addition of MSE between the
derivative of target signals approximated with forward finite dif-
ference, and the derivative of reconstructions evaluated in the INR
(For WaveGAN this is approximated by forward finite difference
derivative of the reconstruction):

L =
1
N

1
M

N

∑
i=1

M

∑
j=1

∥∥Φ(tj, zi)− yi(tj)
∥∥2

+

∥∥∥∥∥ δ

δtj
[Φ(tj, zi)]− ∆tj[yi(tj)]

∥∥∥∥∥
2

.

(4.7)

Where N is the batch size, M is the amount of sampled time coor-
dinates per waveform and ∆ is the forward finite difference. The
addition of a MSE of derivatives of signals is justified by consistent
training improvements observed in preliminary experiments.

When optimizing representations of audio waveforms for per-
ceptual fidelity, the problem is constrained unnecessarily by using
objective functions that are calculated per amplitude sample such as
MSE.27 However, it turns out π-GAN has strict requirements regard- 27 As noted in section 2.2
ing the local consistency of objective functions, showing improved
results for MSE compared to perceptual objectives. See section 6.1.2.





5
∣∣∣∣ Experimental Setup

In this chapter we specify all details of the experimental setup relevant
for interpreting experimental results. Some details necesarry for
reproducing these experiments, but not crucial for interpreting results
are left out. Those can be found in section A.3.

5.1 Overview
In our experiments we explore the following options regarding the
parameterizations of ϕi and p(θ|z):

1. Architecture family of ϕi (see section 4.6)

• Convolutional neural networks
• Implicit neural representations

2. latent embedding inference methods (see section 4.2)

• Autoencoder
• Autodecoder

3. Conditioning methods c (see section 4.3).

• Concatenation
• Feature wise linear modulation (FiLM)

4. Activation functions (see section 4.4)

• ReLU
• Sine
• Mixed

5. Latent mapping network ψ depth (see section 5.3)

6. ϕi network shape (see section 5.3)

7. Weight regularization (see section 5.4.1)

8. Progressive activation scaling (see section 5.4.2)

The compared parameterizations of ϕi and p(θ|z) in the baseline
experiments (section 6.1) differ among parameterizations 1 to 6, as
described in section 4.6. In the ablation experiments (section 6.2) we
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compare the effect altering 3, 4, 5 and 6 in the best performing INR
based parameterization of ϕi, π-GAN. In section A.11, we report a 1 Although the results of this section

resulted in interesting insights, we
decided to move this section to the
appendix as it is not essential to our
research questions.

sequence of SIREN experiments aimed at finding potential solutions
to observed shortcomings of resulting representations fi in previous
sections. Finally, we validate potential solutions found in section A.1
in our regular experimental setup in section 6.3.

5.1.1 General remarks

In all experiments in section 6.1, 6.2 and 6.3 we train waveform rep-
resentations as described in 4.1. We use the objective function as
in equation 4.7, to optimize weights of tested neural architectures
using gradient descent, see section 5.6 for details regarding the
specific optimizers we tested. We test three datasets, described in
section 5.5. We did an extensive hyperparameter search in our ini-
tial experiments, in later experiments we only optimized a subset of
hyperparameters, described in section 5.7.

All reported results are based on three runs with different seeds
after 5000 epochs in section 6.1 and 6.2, 10.000 epochs in section 6.3.
We compare learned representations fi to the original waveforms Xi

and evaluate the perceptual- and absolute fidelity. Used metrics and
selection procedure are described in section 5.8.

Input coordinates for implicit architectures are sampled in the
range [−1, 1]. Preliminary experiments indicated that subsampling
evenly spaced coordinates2 up to a fraction of 1

8 did not have signifi- 2 Subsampling evenly spaced coordi-
nates effectively reduces the sampling
rate of the wavefile as perceived by the
network in every iteration. Uniform
random subsampled coordinates also
worked okay, but slightly worse than
evenly spaced subsampling.

cant negative impact on training objective errors observed after 5000
epochs for our datasets. Thus, to even out memory usage between
implicit and convolutional network architectures and allow for equal
batch sizes, we decided to sample 2000 out of 16000 coordinates for
implicit architectures in every iteration during training.

5.2 Baseline experiments

5.2.1 Parameterizations of ϕi & p(θ|z)

The following parameterizations of ϕi & p(θ|z) are compared, exact
parameter counts are in brackets:

1. WaveGAN3 [799k] 3 Donahue et al., Adversarial Audio Synthesis,
2019.

2. IM-NET4 [1.1M] 4 Chen and Hao Zhang, Learning Implicit
Fields for Generative Shape Modeling, 2019.

3. π-GAN5 [790k] 5 Chan et al., Pi-GAN, 2020.

For all parameterizations of ϕi & p(θ|z), the network architec-
ture is changed such that parameter counts are in the order of 106.
WaveGAN’s parameter count is reduced by reducing the number of
channels throughout the network by a factor of eight. IM-NET’s pa-
rameter count is reduced by removing the first, largest hidden layer.
π-GAN’s parameter count did not have to be reduced.
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5.2.2 Latent embedding zi inference methods

The decoders are tested with the following latent embedding infer-
ence methods:

1. Autoencoder6 6 Rumelhart et al., Parallel Distributed Process-
ing, 1986.

2. Autodecoder7 7 Park et al., DeepSDF, 2019.

The autoencoder setups in our experiments use a convolutional
encoder designed to match WaveGAN, see section A.3.3 for architec-
tural details. We used this type of encoder as it is compatible with
WaveGAN and preliminary experiments indicated a better perfor-
mance than recurrent encoders (wav2vec8), and fully-connected 8 Schneider et al., Wav2vec, 2019.
encoders with DFT’s as input for INRs.

5.3 Ablation experiments

5.3.1 Parameterizations of ϕi & p(θ|z)

In the ablation experiments we continue with the best perform-
ing INR parameterization and latent embedding inference method
found in the baseline experiments. Then, we compare the effects of
changing the following specific parameterizations:

1. Activation functions in ϕi

(a) All sine (π-GAN)

(b) Sine first, others ReLU

(c) Sine last, others ReLU

(d) All ReLU

2. Conditioning mechanism c

(a) FiLM (π-GAN)

(b) Concat, middle layer

(c) Concat, all layers

3. Latent mapping network ψ depth

(a) Three layer latent mapping network (π-GAN)

(b) Minimal (single layer) latent mapping network

(c) Extended (five layer) latent mapping network

4. ϕi Network shape

(a) π-GAN (256 hidden units, 8 layers)

(b) Deep (200 hidden units, 12 layers)

(c) Wide (380 hidden units, 4 layers)

(d) Shrinking (840, 420, 210, 105 hidden units)
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5.4 Proposed extension experiments
The methods evaluated in this section are developed on SIRENs
evaluated in a simplified environment. The validation process is
reported in section A.1.

Since these methods significantly increase the amount of iter-
ations needed to converge, we double the total amount of epochs
compared to section 6.1 and 6.2, training for 10.000 epochs instead of
5000.

5.4.1 Weight regularization

We use the same weight regularization as tested in section A.1, re-
sulting in the following loss function:

L =
1
N

1
M

N

∑
i=1

M

∑
j=1

∥∥Φ(tj, zi))− yi(tj)
∥∥2

+

∥∥∥∥∥ δ

δtj
[Φ(tj, zi)]− ∆tj [yi(tj)]

∥∥∥∥∥
2

+
λ

2
∥Wϕi∥

2.

(5.1)

Note that weight regularization is only applied to the weights of
ϕi, not to those of ψ. In this section we do no new hyperparameter
search, but continue with the architecture and previously found op-
timal ω0’s for π-GAN vanilla to validate if this method can effective
applied after a parameter search in the short training regime. For
the linearly decreasing weight regularization, we decrease λ to zero
between epoch 0 to 5000. In the final 5000 epochs we train without
weight regularization.

5.4.2 Progressive activation scaling

Progressive activation scaling is inspired on methods proposed by
Hertz et al.9. It is implemented as follows: 9 Hertz et al., SAPE, 2021.

256 different entries for the first ω0’s are picked from a uniform
distribution in the reported range, sorted low to high, and then
split in 8 groups. At the beginning of training, all ω0’s are masked.
The first half of total iterations is split in 8 periods (the amount of
ω0 groups). In the first half of each period a new group of ω0’s
is linearly unmasked. In the second half of each period nothing
changes. In the second half of total iterations, all ω0’s are unmasked
and stay that way. 10. 10 This method was selected by testing

on a π-GAN setup with a dataset size
of 128 samples. We also tried selecting
ω0’s as evenly spaced numbers over a
specified interval and treating every
ω0 value as its own group, fading
them in one by one. These alterations
performed slightly worse.

5.5 Datasets
For all experiments in section 6.1, 6.2 and 6.3 we consider the follow-
ing three datasets:
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1. 1 second, 1024 item, keyboard waveforms in MIDI notes [60, 64]
subset of NSYNTH11. Balanced for note counts. Recorded at a 11 Engel, Resnick, et al., Neural Audio Synthe-

sis of Musical Notes with WaveNet Autoencoders,
2017.

sampling rate of 16kHz.

2. 1 second, 1024 item, keyboard, mallet and guitar waveforms in
MIDI notes [24, 84] subset of NSYNTH. Balanced for note- and
instrument counts. Recorded at a sampling rate of 16kHz.

3. 1024 item, keywords 0 to 9 balanced subset of Speech Com-
mands12. Recorded at a sampling rate of 16kHz. 12 Warden, Speech Commands, 2018.

Preliminary tests of baseline parameterizations of ϕi and p(θ|z)
in the specific generative framework described in section 4.1 showed
that ϕi and p(θ|z) with a reasonable amount of parameters were un-
capable of reconstructing large datasets13. Thus, we set the dataset 13 This depends on many factors includ-

ing the generative framework, how its
parameterized, latent embedding size
and dataset uniformity

size for the main experiments to be challenging, but not infeasible
based on preliminary experiments.

NSYNTH datasets composition

Instrument samples in NSYNTH14 are tagged for the following 14

1. Bright: A large amount of high
frequency con- tent and strong
upper harmonics.

2. Dark: A distinct lack of high fre-
quency content, giving a muted
and bassy sound. Also sometimes
described as ’Warm’.

3. Distortion: Waveshaping that
produces a distinctive crunchy
sound and presence of many har-
monics. Sometimes paired with
non-harmonic noise.

4. Fast Decay: Amplitude envelope of
all harmonics decays substantially
before the ’note-off’ point at 3
seconds.

5. Long Release: Amplitude envelope
decays slowly after the ’note-off’
point, sometimes still present at the
end of the sample at 4 seconds.

6. Multiphonic: Presence of overtone
frequencies related to more than
one fundamental frequency.

7. Non-Linear Envelope: Modulation
of the sound with a distinct enve-
lope behavior different than the
monotonic decrease of the note.
Can also include filter envelopes as
well as dynamic envelopes.

8. Percussive: A loud non-harmonic
sound at note onset.

9. Reverb: Room acoustics that were
not able to be removed from the
original sample.

10. Tempo-Synced: Rhythmic mod-
ulation of the sound to a fixed
tempo.

qualities: Bright, Dark, Distortion, Fast Decay, Long Release, Multi-
phonic, Non-Linear, Percussive, Reverb, Tempo-Synced. We filtered
all samples that qualified for any of these qualities to create more
uniform and less complex datasets.

Then, we selected a dataset subset with the smallest range of
subsequent notes within one instrument family cumulating to 1024
items. This turned out to be the keyboard instrument family, MIDI
note 60 (C4, 261.63Hz) to 64 (E4, 329.63Hz). The dataset was sam-
pled balancing for note counts. We refer to this dataset as NSYNTH
keyboard.

We selected the other split of NSYNTH to contrast with NSYNTH
keyboard in pitch- and timbral diversity. Furthermore, we selected
MIDI notes 24 (C1, 32.70Hz) to 84 (C6, 1046.50Hz)15, since the

15 Reported pitch related frequencies
are assuming standard A440 tuning.
When closely inspecting the DFT’s
in figure 5.2 there appear to be some
samples which are tuned differently.

timbres of more extreme notes can sound unnatural to an average
listener, which could complicate reconstruction quality judgements
(as argued by the authors of GANSynth16). Then, we selected three

16 Engel, Agrawal, et al., GANSynth, 2019.

instruments families to introduce more timbral diversity: keyboard,
mallet and guitar. The dataset was sampled balancing for note-
and instrument family counts. We refer to this dataset as NSYNTH
Diverse.

Speech Commands dataset composition

For the Speech Commands dataset we selected keywords zero
trough nine, as is done by Donahue et al.17. These authors argue

17 Donahue et al., Adversarial Audio Synthesis,
2019.

that these ten words are interesting for generative purposes because
they encompass many phonemes and can be viewed as an audio
counterpart of the MNIST dataset of written digits. We refer to this
dataset as Speech Commands.
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Dataset analysis

The NSYNTH datasets are considered less complex than the
Speech Commands dataset since instrument tones are significantly
more spectrally consistent. For keyboard and mallet samples, wave-
forms can often be reconstructed by mixing a base frequency (which
determines the perceived pitch) and its overtones, multiples of the
base frequency (the relative magnitude of which is one of the key
identifying features of timbre). For string and brass instruments
waveforms are more complicated, often containing noise compo-
nents. Speech waveforms are spectrally even more complex, with
energy spread out over different unrelated frequencies.

Figure 5.1 shows the time-domain representations, absolute am-
plitude magnitudes of every sample for every dataset. Discrete
Fourier transform (DFT) magnitudes of every sample for every
dataset are shown in figure 5.2. Rows are sorted on frequency with
the highest magnitude, low to high. Note that DFT’s are calculated
over the complete waveforms. In these figures we observe the fol-
lowing:

• Speech Commands’ time-domain representations show hetero-
geneity in onset times.

• Speech Commands DFT’s are most spread out and have lower
peak frequency magnitudes. This most strongly reflects the fact
that Speech Commands’ waveforms contain silence as observed
in their time-domain representations, but is also caused by their
relative spectral incoherence compared to musical, pure tones.

• NSYNTH datasets do not contain significant amounts of silence.

• NSYNTH Keyboard shows most uniform DFT’s, showing only
peaks at base frequencies and overtones.

• NSYNTH Diverse shows more speckled DFT’s, with significant
magnitudes in frequency bins at different fractions of base fre-
quencies, lower and higher. Energy in lower frequencies can also
be observed in time-domain representations showing patterns
resembling dashed lines.

• NSYNTH Diverse shows a higher diversity in base frequencies.

• Although NSYNTH Diverse contains many higher base frequen-
cies, NSYNTH Keyboard samples display larger peaks in fre-
quency bins above 1000Hz, due to high magnitude overtones.

5.6 Optimizer
Modern neural networks are typically trained with first-order gradi-
ent methods, which can be broadly categorized into two branches:
the accelerated stochastic gradient descent family such as SGD with
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Figure 5.1: Time domain represen-
tations for all discretely sampled
waveforms {Xi}N

i=1 in all considered
datasets D.
Rows represent {yi}N

i=1, columns repre-
sent sampled time coordinates

{
tj
}M

j=1.
These plots display absolute amplitude
values: |aj| = |yi(tj)|.
Rows are sorted on their coordinate tj
with maximum absolute amplitude in
Xi : arg max

{tj}M
j=1

|yi(tj)|, low to high.

Figure 5.2: Frequency domain repre-
sentations for all discretely sampled
waveforms {Xi}N

i=1 in all considered
datasets.
Obtained by taking the absolute mag-
nitudes up to a frequency of 4000Hz of
the discrete Fourier transform (DFT) of
{Xi}N

i=1.
Rows are sorted on their frequency
magnitude with the highest value, low
to high.
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momentum and the adaptive learning rate methods, such as Adam.
SGD methods use a global learning rate for all parameters, while
adaptive methods compute an individual learning rate for each pa-
rameter. Compared to the SGD family, adaptive methods typically
converge fast in the early training phases, but have poor generaliza-
tion performance. In our baseline decoder comparison we compare
Adam18 and Adabelief19. AdaBelief consists of the same algorithm 18 Kingma and Ba, Adam, 2017.

19 Zhuang et al., AdaBelief Optimizer, 2020.as Adam, but also considers curvature information by scaling up-
date directions by the change in gradient. Preliminary experiments
showed consistent, favourable results for Adabelief in all setups.

5.7 Hyperparameter search
In all experiments in section 6.1 and 6.2 we optimize SIREN hy-
perparameters ω0 first and ω0 hidden20 for every combination of 20 ω0 first and ω0 correspond to pa-

rameters controlling all ω0 values in
the first layer, and all ω0 values in the
layers after the first layer.

dataset D, architecture and latent embedding inference method. We
optimize these hyperparameters by running respective experiments
in a short training regime of 200 epochs, using Bayesian Search21 21 Snoek et al., Practical Bayesian Optimization

of Machine Learning Algorithms, 2012.with Hyperband early stopping22 to guide the search, see section
22 L. Li et al., Hyperband, 2018.A.3.2 for more details. Preliminary experiments indicated that op-

timal ω0 or coordinate multiplier values are very sensitive to many
architectural- and data characteristics. Thus, these values are swept
using the described procedure in all later experiments. See section
A.1.2 for an analysis of optimal ω0 values.

For all experiments in section 6.1 we additionally executed a
grid search over different optimizers and learning rates. Resulting
optimal parameters are reported in section A.3.2. These hyperpa-
rameters are kept constant in all later experiments.

5.8 Evaluation
Capturing the perceptual fidelity of audio reconstructions in a met-
ric is not straightforward. Many audio-to-audio distances exist, each
with different sensitivities, indicating the complexity of the problem.

For this work, we decided to start with an extensive selection of
metrics based on recent and established research in audio recon-
struction and generation and implementation availability. Then, we
select metrics for representing background noise presence, sample
quality, and overall quality for the NSYNTH datasets combined
and the Speech Commands dataset as the main focus of our com-
parisons. For details on the metric selection procedure, see section
5.9.

5.8.1 Considered metrics

1. time-domain MSE

2. time-domain derivative MSE
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3. time-domain MSE + derivative MSE

4. Signal-to-Noise Ratio (SNR)

5. Segmented SNR (SegSNR)

6. discrete Fourier transform (DFT) magnitude MSE

7. DFT magnitude wasserstein distance

8. DFT angular phase MSE

9. DFT magnitude pos/neg difference

10. Log-spectral distance (LSD)23 23 Gray and Markel, “Distance Measures for
Speech Processing”, 1976.

11. Multi resolution short-time Fourier transform (STFT) MSE

12. Multi resolution STFT wasserstein distance

13. Multi resolution STFT pos/neg difference

14. CSIG, CBAK, COVL24 24 Hu and Loizou, “Evaluation of Objective
Quality Measures for Speech Enhancement”,
2008.15. PESQ25
25 Rix et al., “Perceptual Evaluation of Speech
Quality (PESQ)-a New Method for Speech
Quality Assessment of Telephone Networks
and Codecs”, 2001.

16. FAD26

26 Kilgour et al., Fr\’echet Audio Distance,
2019.

17. CDPAM27

27 Manocha et al., CDPAM, 2021.For NSYNTH datasets we use CSIG for representing signal qual-
ity, multi resolution STFT MSE for representing background noise
presence and CDPAM for overall quality. For the SPEECHCOM-
MANDS dataset we use LSD for representing signal quality and
overall quality and inverse CSIG representing background noise
level.

CSIG is a composite of objective measures (spectral subtractive,
subspace, statistical-model based, and Wiener algorithms) combined
using multiple linear regression analysis to correlate highly with
subjective quality ratings of signal distortion. The subjective quality
ratings were obtained using the ITU-T P.835 methodology designed
to evaluate the quality of enhanced speech along three dimensions:
signal distortion, noise distortion, and overall quality.

Multi resolution STFT MSE is calculated by averaging STFT mag-
nitude MSE’s as shown in equation 5.2 with hamming windowing
for N=4 window sizes: {400, 800, 1600 3200}:

Multi STFT MSE =
1
N

N

∑
i
∥|STFTi(Xi)| − |STFTi({ϕi(tj)}M

j=1)|∥
2.

(5.2)

CDPAM is a contrastive learning based perceptual audio similarity
metric parameterized as a deep neural network. It is trained on a
dataset of audio similarity judgements based on triplet comparisons,
asking subjects: “Is A or B closer to reference C?”.
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The log-spectral distance (LSD) is a distance measure (expressed
in dB) between the power spectrum (P(ω)) of waveforms. P(ω)

is commonly defined as the Fourier transform of its autocorrela-
tion function, where ω is the frequency. It can be approximated in
discrete signals as follows:

P(ω) ≈ 1
M

M

∑
τ=1

|STFT(ω, τ)|2

Where M is the amount of frames in the resulting STFT transfor-
mation. LSD is then calculated as by combining all frequencies F as
follows:

LSD =
1
F

F

∑
i=1

[
log

P(ω)

P̂(ω)

]2

. (5.3)

For evaluating the absolute fidelity of amplitude function represen-
tations fi), we measure mean squared error (MSE) between signals
and their reconstructions as in equation 5.4:

MSE =
1
N

1
M

N

∑
i=1

M

∑
j=1

∥∥Φ(tj, zi)− yi(tj)
∥∥2 . (5.4)

With the difficulties of measuring perceptual fidelity of audio
waveforms in mind, we also report qualitative waveform analyses
of representative samples of the NSYNTH Keyboard dataset (where
helpful).

5.9 Metric selection
To select metrics that are sensitive to the characteristics of back-
ground noise, sample degradation and overall perceived quality
in reconstructions of the models and data in our interest, we rate
reconstructions of the baseline models and INR ablations28 on back- 28 The INR decoder examined in

ablation experiments was chosen based
on MSE reconstruction scores for every
dataset.

ground noise presence, sample quality, and overall quality for the
three datasets.

Then, we select a metric for representing background noise pres-
ence, sample quality and overall quality for the NSYNTH datasets
combined and the Speech Commands dataset based on correlation
coefficients between metrics and the respective ratings. Selected
metrics are used for analysis and reported in all later sections of this
chapter.

5.9.1 Subjective ratings of perceptual fidelity

Subjective ratings of overall quality, sample quality and background
noise level of reconstructed samples for all tested parameterizations
of ϕi in section 6.1 and 6.2, for all datasets are shown in figure 5.3.
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For every combination of dataset and parameterization of ϕi, we se-
lected the best training run as measured by MSE. Since differences
between reconstructions can be subtle, ratings are relative to recon-
structions of other architectures. Ratings are given by us, for a single
sample. This sample was selected for every dataset by validating
that the sample was representative for the performance of every
parameterization of ϕi. A sample was determined to be represen-
tative for the performance of a decoder for a dataset if 10 different,
randomly picked reconstructed samples of the same decoder for the
same dataset were on par in terms of overall quality, sample quality
and background noise level.

Figure 5.3: Subjective rating of recon-
structed samples for all datasets for
overall quality, sample quality and
background noise level between 0 and
10. For quality ratings, higher is better.
For background noise, higher is more
noise. Ratings are relative to other
setup reconstruction ratings within
each dataset. All reported architectures
are employed in an autodecoder setup
where not specified.

1. WaveGAN autoencoder:

(a) Best overall quality and background noise levels for both
NSYNTH datasets.

(b) Best sample quality for the NSYNTH diverse dataset.
(c) Mostly silent reconstructions for the Speech Commands

dataset.

2. WaveGAN autodecoder:

(a) Performs very close to its autoencoder counterpart.
(b) Comparing to WaveGAN autoencoder, reconstructions have

slightly more clarity, but also contain modest high-pitched
noise at higher volumes.

(c) Produces audible, but barely legible signals for the Speech
Commands dataset.
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3. π-GAN autodecoder is the only setup capable of reconstructing
legible words in the Speech Commands dataset.

4. π-GAN wide: best overall quality, sample quality and back-
ground noise level29 for the Speech Commands dataset. 29 Ignoring setups that did not produce

reasonable results.
5. π-GAN sine first and π-GAN wide: best sample quality for the

NSYNTH keyboard dataset.

6. All implicit architectures without sine activations in the first
layer or without FiLM conditioning produce reconstructions with
barely any audible sound for all datasets.

7. All implicit architectures that do produce audible sounds, intro-
duce background noise in reconstructions to some extent, which
is not the case for WaveGAN architectures.

5.9.2 Metric correlation

Because of the used rating method30, Spearman’s rank correlation 30 Ratings were given relative to other
reconstructions and should not be
interpreted in an absolute manner, but
rather as values to rank against each
other.

coefficient is used for metric correlation calculations as it assesses
monotonic relationships (whether linear or not). Absolute Spear-
man’s rank correlation coefficients of all considered metric scores
and ratings of representative samples are calculated within datasets.
Resulting correlation coefficients are reported in figure 5.4. The
NSYNTH datasets are aggregated by averaging correlation coeffi-
cients. If the sign of a correlation coefficient between the NSYNTH
datasets is inconsistent, this coefficient is set to zero.

Figure 5.4: Absolute Spearman’s rank
correlation coefficients of all considered
metrics with subjective ratings for
overall quality, sample quality and
background noise level. Metrics with
the highest correlation within their
dataset and rating category are colored
darker. Missing bars indicate incon-
sistent correlation directions between
datasets.

As shown in figure 5.4, the following metrics correlate best with
our qualities of interest:
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1. NSYNTH combined:

(a) CDPAM correlates best with overall quality ratings.
(b) CSIG correlates best with sample quality ratings.
(c) Multi resolution STFT MSE correlates best with background

noise level ratings.

2. Speech Commands:

(a) LSD correlates best with overall quality and sample quality.
(b) FFT magnitude positive difference correlates best with back-

ground noise level ratings.
(c) CSIG’s absolute Spearman correlation coefficient is not sig-

nificantly lower than the more experimental FFT magnitude
positive difference metric (0.909 versus 0.893).

We decide to continue with CSIG for representing background
noise levels in Speech Commands. Note that CSIG is designed to
correlate with sample quality, where a higher score is better. The
correlation coefficient of CSIG and background noise level judge-
ments in Speech Commands is + 0.893, which indicates that a higher
CSIG score in Speech Commands positively correlates with more
background noise. This is the opposite of what is expected.

5.9.3 Discussion

• Selected background noise metric for Speech Commands is CSIG
inversed. This is not a scientifically backed metric, results should
be interpreted with caution.

• Ratings of perceptual fidelity are given by a single person. For
more robust results, these should be rated by more people. Small
differences in ratings could be subject to noise.

• The ranking of subjective ratings of perceptual fidelity is mostly
consistent with the ranking of selected perceptual fidelity evalua-
tion metrics reported in section 6.1 and 6.2. This indicates that the
quality of reconstructions within dataset and parameterization of
ϕi combinations and the selected perceptual fidelity evaluation
metrics are consistent.

• Without consistency in quality of reconstructions within dataset
and parameterization of ϕi combinations the selection procedure
for representative samples to be rated31 would have been infeasi- 31 The selection procedure for represen-

tative samples to be rated is described
in the beginning of this chapter.

ble.

• CBAK, COVL, CSIG and PESQ are each designed for measuring
speech waveform quality and specifically to represent one of the
perceptual fidelity categories we consider: background noise
level, overall-, sample- and overall quality, respectively. These
metrics have been around for ± 15 years, and are still used in re-
search as of today. Still, they correlate relatively poorly with our
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subjective ratings of perceptual fidelity in their respective cate-
gories. Assuming that similar perceptual fidelity degradation can
be caused by different kinds of low-level waveform perturbations,
this seems to indicate that these metrics are sensitive to other per-
turbations than those introduced in by INRs in our experiments.

• To our knowledge no previous research has reported similar ob-
servations as in statement 5.9.3. Thus, considering the distinct
characteristics of INR’s compared to other audio reconstruc-
tion/synthesis methods, we hypothesize that INRs can introduce
unique low-level waveform perturbations. When researching
perceptual fidelity of INR-based waveform synthesis, extra care
should be taken when picking evaluation metrics.



6
∣∣∣∣ Results and Discussion

In this chapter we examine the ability of several implicit and convolu-
tional network architectures conditioned on latent embeddings on the
task of reconstructing different sets of audio waveforms as described
in section 4.1. We report the results of the experiments as described in
chapter 5 and discuss them.

In section 6.1 we evaluate two different previously proposed archite-
cures to a convolutional architecture as a baseline, and compare the
effect of different latent embedding inference methods.

Then, in section 6.2, we conduct a series of ablation experiments on
the best performing conditional INR decoder to find an answer to
what architecture charecteristics contribute how much to reconstruc-
tion performance. Then we try to find a concrete relation between ω0
values troughout siren networks and output signal frequencyes.

Finally, in section 6.3, we compare the effect of progressive activa-
tion scaling and weight regularization as described in section 5.4 for
countering high frequency noise observed in reconstructions of earlier
experiments.

6.1 Baseline experiments
In this section we aim to answer the following questions:

◦ What latent embedding inference method is optimal for exploring
the representation characteristics specific to various conditional
INR parameterizations?

♢ Are previously proposed conditional INR parameterizations ca-
pable of representing a distribution of audio waveforms with
similar perceptual- and absolute reconstruction fidelity as trans-
posed convolution based architectures designed for this purpose?

△ What are the main shortcomings of audio waveform represen-
tations learned by these conditional INRs, and how can these be
explained theoretically?

We report experimental results on the task of learning distribu-
tions of continuous audio waveform representations as described
in section 4.1. We compare the perceptual- and absolute fidelity of
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learned representations fi of different recently proposed parameteri-
zations of ϕi & p(θ|z) (IM-NET, π-GAN and WaveGAN, see section
4.6), combined with diferent latent embedding inference methods
(autoencoder and autodecoder, see section 4.2) on the datasets de-
scribed in section 5.5.

Observations. We summarize the most important observations
regarding the questions we aim to answer in this section:

◦ Autoencoders perform worse than autodecoders in all compared
setups, and that these negative effects are more significant for
π-GAN.

♢ In autodecoder setups π-GAN outperforms the other architec-
tures in absolute fidelity on all datasets.

♢ IM-NET shows results close to silence.

△ For perceptual fidelity WaveGAN slightly outperforms π-GAN,
which shows local waveform inconsistencies in NSYNTH datasets,
but fails to reconstruct Speech Commands reasonably.

Conclusions. We summarize the key findings of our analysis of
the experimental results reported in this section:

◦ Autodecoders are optimal for exploring the representation char-
acteristics of INR parameterizations.

♢ π-GAN is better at representing a distribution of audio wave-
forms than transposed convolution based architectures regarding
absolute reconstruction fidelity, but π-GAN is worse regarding
perceptual fidelity in less diverse datasets, due to local inconsis-
tencies in reconstruced waveforms.

△ Local waveform inconsistencies are a main shortcoming of INRs,
and periodic nonlinearities play an important role in this, as well
as their success.

6.1.1 Results

See table 6.1 for the perceptual fidelity scores for NSYNTH datasets
and table 6.2 for the perceptual fidelity scores for Speech Com-
mands. Absolute fidelity scores for all datasets are reported in ta-
ble 6.3. Figure 6.1 shows the first 200 samples of a waveform from
the NSYNTH keyboard dataset and reconstructions of all baseline
setups.1 1 Note that this is a small section of

a single waveform. Although the
described differences between archi-
tectures’ reconstructions are present
in most waveforms we examined, con-
clusions should be made with caution
since the majority of waveform samples
remain unexamined.

Perceptual fidelity evaluation

Considering tables 6.1 and table 6.2, we make the following ob-
servations regarding the perceptual fidelity of fi for the different
parameterizations of ϕi & p(θ|z) and latent embedding inference
methods:
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1. WaveGAN autodecoder:

• Best perceptual fidelity evaluations across all metrics for
NSYNTH keyboard

• best CSIG (sample quality) and Multi resolution STFT MSE
(background noise level) scores for NSYNTH diverse.

2. π-GAN autodecoder:

• best LSD (overall- and sample quality) scores for Speech Com-
mands.

• best CDPAM (overall quality) scores for NSYNTH diverse.
• Perceptual fidelity evaluations close to WaveGAN autode-

coder, except for Multi resolution STFT MSE (background
noise level).

3. IM-NET: Overall- and sample quality scores of all IM-NET archi-
tectures in the NSYNTH datasets are close to those of silence.

4. Autodecoder setups consistently outperform autoencoder setups.

CDPAM: Overall quality CSIG: Sample quality Multi STFT MSE: Noise
Architecture Diverse Keyboard Diverse Keyboard Diverse Keyboard

WaveGAN AE 0.67 ± 0.3 0.67 ± 0.46 -0.09 ± 2.05 -3.1 ± 3.09 0.09 ± 0.07 0.1 ± 0.06
IM-NET AE 1.83 ± 0.02 1.60 ± 0.01 -4.24 ± 0.14 -5.76 ± 0.36 0.15 ± 0.0 0.12 ± 0.0
π-GAN AE 0.72 ± 0.25 0.64 ± 0.21 -2.01 ± 2.03 -2.98 ± 2.63 0.22 ± 0.09 0.21 ± 0.04

WaveGAN AD 0.43 ± 0.21 0.43 ± 0.27 1.6 ± 1.4 -1.66 ± 2.61 0.06 ± 0.05 0.06 ± 0.04
IM-NET AD 1.81 ± 0.0 1.61 ± 0.0 -4.14 ± 0.04 -6.76 ± 0.16 0.13 ± 0.0 0.1 ± 0.0
π-GAN AD 0.35 ± 0.24 0.48 ± 0.18 1.38 ± 1.84 -1.97 ± 2.45 0.06 ± 0.02 0.14 ± 0.04

Silence 1.65 ± 0.0 1.77 ± 0.0 -1.31 ± 0.0 -4.62 ± 0.0 0.16 ± 0.00 0.16 ± 0.00
White noise 1.06 ± 0.27 1.06 ± 0.32 -5.43 ± 3.14 -9.31 ± 2.59 2.27 ± 0.06 2.32 ± 0.04

Table 6.1: Evaluation metrics CD-
PAM, CSIG and multi resolution STFT
MSE scores of all baseline setups for
NSYNTH datasets. For CDPAM and
multi resolution STFT MSE a lower
score is better, for CSIG representing
sample quality in NSYNTH datasets a
higher score is better. Silence and white
noise (µ = 0, σ = 1) scores reported for
reference.

Architecture LSD: Overall / Sample quality CSIG: Noise

WaveGAN AE 0.69 ± 0.44 0.51 ± 0.74
IM-NET AE 0.72 ± 0.0 -1.38 ± 0.02
π-GAN AE 0.48 ± 0.21 0.78 ± 1.1

WaveGAN AD 0.38 ± 0.27 0.88 ± 1.03
IM-NET AD 0.49 ± 0.0 -0.68 ± 0.04
π-GAN AD 0.27 ± 0.12 0.59 ± 1.26

Silence 0.74 ± 0.0 -2.05 ± 0.0
White noise 7.27 ± 0.07 -1.24 ± 1.93

Table 6.2: LSD ×10 and CSIG scores
of all baseline setups for the Speech
Commands dataset. For both metrics
lower is better. Silence and white noise
(µ = 0, σ = 1) scores reported for
reference.

Absolute fidelity evaluation

Considering table 6.3, we make the following observations regarding
the absolute fidelity of reconstructed samples fi for the different
parameterizations of ϕi & p(θ|z) and latent embedding inference
methods:

1. π-GAN autodecoder: best absolute fidelity for all datasets.

2. Autodecoder setups consistently outperform autoencoder setups.

3. IM-NET: MSE close to silence for all datasets.
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Architecture NSYNTH Keyboard NSYNTH Diverse Speech Commands

WaveGAN AE 25.68 ± 2.59 12.50 ± 0.38 6.64 ± 0.59
IM-NET AE 74.35 ± 0.13 44.12 ± 0.04 6.73 ± 0.01
π-GAN AE 13.21 ± 0.11 28.89 ± 0.86 2.75 ± 0.09

WaveGAN AD 8.67 ± 0.83 4.05 ± 0.42 2.22 ± 0.55
IM-NET AD 70.35 ± 0.23 41.19 ± 0.08 6.23 ± 0.02
π-GAN AD 4.48 ± 1.02 1.32 ± 0.3 0.85 ± 0.01

Silence 78.74 ± 0.0 46.19 ± 0.0 7.48 ± 0.0
White noise 1094.74 ± 1313.56 1061.49 ± 1212.03 1023.18 ± 1111.56

Table 6.3: Mean and standard deviation
of MSE ×103 statistics of batches (128
samples) of synthesized samples in
the 5000th epoch of all models with
best performing hyperparameters in
baseline setups. Silence and white
noise (µ = 0, σ = 1) errors reported for
reference.

Qualitative waveform analysis | NSYNTH keyboard

Considering figure 6.1, we make the following observations regard-
ing the qualities of the reconstructed waveforms of the different
parameterizations of ϕi & p(θ|z) and latent embedding inference
methods:

1. WaveGAN reconstructions are significantly smoother.

2. Autoencoder setups seem to have more difficulty reaching more
extreme amplitudes.

3. The first 25 samples of the original waveform are silent, π-GAN
autodecoder’s reconstruction is able to reconstruct this best. For
the rest of the waveform, WaveGAN autodecoder’s reconstruc-
tions show the most resemblence to the original due to their
smoothness.

Figure 6.1: First 200 timepoints of a
waveform validated to be represen-
tative as described in section 5.9.1 of
the NSYNTH keyboard dataset and
reconstructions of baseline setups.
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6.1.2 Discussion

Interpreting results of all baseline experiments in the review above,
the following key findings emerge regarding the effectiveness of
autoencoders and autodecoders for exploring characteristics of
ϕi&p(θ|z), the capabilities of previously proposed INRs and their
main shortcomings:

◦ Autodecoders are optimal for exploring characteristics of ϕi.
All parameterizations of ϕi & p(θ|z) employed in an autoencoder
setup are consistently less expressive, and perform worse than
those employed in an autodecoder setup (see observations 2 and
2. But, this effect is not of the same magnitude for every combina-
tion of dataset and decoder. Comparing performance of autode-
coders to autoencoders for WaveGAN, all scores are reduced with
equal proportions for all datasets, indicating autoencoders slow
learning. While for π-GAN scores degrade with a significantly
higher ratio for NSYNTH Diverse and Speech Commands. We
hypothesize this indicates compatibility issues with the encoder,
explained as follows:

(a) The convolutional encoder used in autoencoder setups learns
significantly faster with more consistent gradients between
samples Xi, in more uniform datasets, similar to observations
in statement /labelenum:base:wave:slow.

(b) π-GAN delivers noisy gradients. See statement 0b.
(c) In more diverse datasets less consistent gradients between

samples Xi combined with the noisy backpropagation of π-
GAN prohibit the encoder from learning, leaving both the
decoder and encoder without a learning signal.

(d) For NSYNTH Keyboard, the most uniform dataset, the con-
volutional encoder receives relatively consistent gradients.
Eventually enough to start forming somewhat meaningful la-
tent embeddings, after which the training of both the encoder
and decoder can make progress.

Thus, we argue that autodecoders are optimal for exploring the
representation characteristics of decoder networks.

♢ IM-NET is not suited for representing audio waveforms. In
line with the results shown in figure 4.7, INRs without sine acti-
vations struggle to represent signals with high detail. On top of
that, results in section 6.2 indicate that FiLM modulation is also
essential for π-GAN in the task at hand. IM-NET has to do with-
out both these parameterizations, which make it signifcantly less
expressive.

△ π-GAN closely follows the objective function. π-GAN strongly
outperforms all other architectures in absolute fidelity, which is
directly optimized by the objective function. This shows π-GAN
is very expressive. However, MSE does not correlate well with the
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perceptual qualities we aim to optimize. This indicates that, when
optimizing for perceptual fidelity, π-GAN might benefit from an
objective function that does align better with these qualities.

△ π-GAN requires locally consistent objectives. We tried many
of the considered metrics that were differentiable as objective
functions, but none of them resulted in reconstruction quality
close to that of the objective function in equation 4.7. An in-depth
comparison of various established spectral and perceptual au-
dio similarity distances by Turian et al.2 maps their output for 2 Turian and Henry, I’m Sorry for Your Loss,

2020.several signal perturbations. The authors find that many exhibit
roughness, resulting in inconsistent gradients within small per-
turbations. Still, many audio synthesis architectures in previous
literature are reported to benefit from these spectral and percep-
tual objective functions3. These observations indicate that π-GAN 3 Défossez et al., SING, 2018.
is significanty less robust against label noise, it has more strict re-
quirements regarding the local consistency and convexity of loss
landscapes.

△ We see two potential sources, likely to be mutually reinforcing, for
π-GAN’s dependence on local consistency in loss functions:

(a) Low dimensional input of INRs: for any neural network to
learn efficiently in supervised setups, close to identical input
needs to result in consistent gradient directions4. If this is 4 Chapelle et al., Semi-Supervised Learning,

2006, smoothness assumption of supervised
learning: If two points x1, x2 are close, then
so should be the corresponding outputs
y1, y2.

not the case, backpropagated errors will cancel each other
out. Since the input of INR’s are low dimensional geometric
coordinates, it processes relatively many close to identical
inputs. Assuming that gradients of loss functions which show
inconsistencies with respect to small signal perturbations also
show inconsistencies within geometrically close measurements
of a signal, it is expected that such loss functions seriously
impede learning for INR’s.

(b) Periodic activation functions: periodic activation functions
are nonmonotonic, classically viewed as an undesired char-
acteristic for activation functions5. Nonmonotonic activation 5 There have been several nonmono-

tonic activation functions proposed
in recent work (Swish, Mish) often
reported to outperform ReLU on a
battery of tasks

functions create geometrically local inconsistent gradients at
stationary points, points where the derivative is zero. In the
case of periodic activation functions, stationary points appear
repeatedly. The density of stationary points within the range of
intermediate layer activations is determined by the input scal-
ing factor ω0. Thus, it is expected that with high ω0’s, required
for modelling signals with fine details, gradients in π-GAN can
quickly get noisy as they travel deeper in the network.6 This 6 Stationary points introduce noise.

The hypothesis that stationary points
in layer activations create noisy signals
aligns with the following observations:
i. π-GAN benefits from larger batch

sizes.
ii. π-GAN requires low learning rates.
iii. Averaging the output of multiple

π-GANs trained with different
seeds significantly reduces back-
ground noise. This indicates that
the noise distribution is centered
around zero, as expected if intro-
duced by stationary points.

does not have to be a problem (larger batch sizes help), but it
makes it significantly harder to learn with noisy loss functions.

♢ π-GAN handles diverse datasets well. π-GAN autodecoder is
the only setup capable of achieving proper representations for the
Speech Commands dataset (see observation 3), WaveGAN au-
todecoder shows the best representations for NSYNTH Keyboard,



RESULTS AND DISCUSSION 57

and for NSYNTH Diverse metric scores are not unanimous, both
architectures perform similar. This aligns perfectly with the diver-
sity of samples within the different datasets. NSYNTH Keyboard
is composed to be uniform, NSYNTH Diverse to contain a higher
diversity of timbres and pitches. Speech Commands is spectrally
most complex, and sample onset times are unaligned, see figures
5.2 and 5.1, and section 5.5. This shows that when learning to
represent a given dataset, WaveGAN thrives when the dataset is
more spectrally uniform and requires it to be aligned7. While π- 7 Generative architectures generally

perform significantly better when
signals in datasets are aligned.

GAN is significantly more expressive, and does not require align-
ment. However, this expressivity comes at a cost: less smoothness
in representations, resulting in audible noise.

♢ π-GAN shows less noise in NSYNTH diverse, It is possible this
has to do with the specific timbral characteristics of instrument
samples in NSYNTH Diverse, noisy components to be specific8 8 Keyboard samples contain signifi-

cantly less noisy components. They
are introduced by snare plucking and
effects such as overdrive.

in e.g. guitar samples. We hypothesize that under certain cir-
cumstances, noisy components in a dataset are able to “absorb”
noise introduced by periodic activation functions, making them
less present in other parts of represented signals. This would be
caused by similar principles as causing the benefits of noise in-
jection in convolutional GANs9, although it is harder to make 9 Feng et al., On Noise Injection in Generative

Adversarial Networks, 2021; Karras, Laine, and
Aila, A Style-Based Generator Architecture for
Generative Adversarial Networks, 2019.

sense of this with per sample reconstruction supervision as in our
experiments.

△ Weak oscillatory bias in sine compositions. The observed ex-
pressivity (when exposed to a smooth learning signal) and rel-
atively non-smooth reconstructions of π-GAN indicate that the
composition of sine activations does not contain a strong oscilla-
tory bias, at least not in the presence of high activation scalings
required represent our datasets.

■ Full π-GAN only ϕi that fits parameter budget. Out of all three
compared architectures, π-GAN is the only architecture which
did not have to be changed to fit the parameter budget we en-
forced. As architecture hyperparameters can be carefully tuned,
this could affect results. For IM-NET this does not seem the case,
preliminary experiments on smaller datasets showed similar re-
sults between full and trimmed versions of IM-NET.

■ Hypernetwork comparison absence. Having a setup with hy-
pernetwork based conditioning would provide a more complete
picture, but because of difficulties with initialization instabilities
and time constraints we decided to leave this for future work.

6.2 Ablation experiments
In this section we aim to answer the following questions:

△ What are the main shortcomings of the process required to learn
audio waveform representations by conditional INRs?
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□ Which conditional INR model hyperparameters are of significant
influence in perceptual- and absolute reconstruction fidelity when
representing different distributions of audio waveforms?

Based on the absolute fidelity of all architectures and latent em-
bedding inference methods, π-GAN in combination with an autode-
coder was chosen to continue experiments with in this section. We
report the experimental results on the task of learning distributions
of continuous audio waveform representations as described in sec-
tion 4.1. We compare the perceptual- and absolute fidelity of learned
representations fi on the datasets described in section 5.5 of several
ablations of π-GAN:

• Activation function

• Conditioning mechanism

• Latent mapping network

• Network shape

See section 5.3 for a more detailed overview of the ablations’
specific parameterizations.

Observations. We summarize the most important observations
regarding the questions we aim to answer in this section:

□ Sine activations in the first layer and FiLM conditioning are essen-
tial for representing any distribution of audio waveforms.

□ Replacing the sine activations with ReLUs in all but the first layer
results in improved representation fidelity for NSYNTH keyboard
and similar results for Speech Commands.

□ Minimizing the amount of layers in the mapping network im-
proves the fidelity of NSYNTH Keyboard and Speech Commands
representations.

□ Decreasing the depth and increasing the width of π-GAN results
in the overall best fidelity of reconstructions for NSYNTH Key-
board and Speech Commands, and close to the best fidelity for
NSYNTH Diverse.

□ The original π-GAN parameterization outperforms all ablations
in NSYNTH Diverse’s fidelity.

Conclusions. We summarize the key findings of our analysis of
the experimental results reported in this section:

△ Fidelity of learned representations is highly sensitive to expressiv-
ity of parameterizations.

△ Optimizing ω0’s in a short training regime creates a pressure to-
wards highly expressive ω0’s, forming a significant shortcoming
in the process required to learn good representations of distribu-
tions of audio waveforms with limited computational resources.
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□ When dealing with pressure towards highly expressive ω0’s in
more spectrally uniform datasets, less expressive parameteriza-
tions of ϕi & p(θ|z) thrive.

□ π-GAN Wide shows optimal representation fidelity due to ex-
pressity limiting factors, a more convex optimization landscape
and more fine-grained FiLM control.

6.2.1 Results: Activation function

First, we examine the effect of changing the activation function in
π-GAN. We evaluate the performance of π-GAN when all sine acti-
vations are replaced by ReLU’s, and when all but the first or the last
are replaced by ReLUs. See table 6.4 for the perceptual fidelity scores
for NSYNTH datasets, and table 6.5 for the perceptual fidelity scores
for Speech Commands. Absolute fidelity scores for all datasets are
reported in table 6.6.

Perceptual fidelity evaluation

Considering tables 6.4 and table 6.5, we make the following obser-
vations regarding the perceptual fidelity of reconstructed samples fi

for the different parameterizations of ϕi & p(θ|z) and latent embed-
ding inference methods:

1. All architectures without a sine activation in the first layer dras-
tically drop performance for Overall- and sample quality metrics,
resulting in scores close to silence.

2. Sine first, others ReLU, outperforms π-GAN in the NSYNTH
keyboard dataset across all metrics by a small margin.

3. For the NSYNTH diverse and Speechcommands datasets π-
GAN consistently outperforms Sine first, others ReLU by a small
margin.

CDPAM: Overall quality CSIG: Sample quality Multi STFT MSE: Noise
Architecture Diverse Keyboard Diverse Keyboard Diverse Keyboard

π-GAN 0.35 ± 0.24 0.48 ± 0.18 1.38 ± 1.84 -1.97 ± 2.45 0.06 ± 0.02 0.14 ± 0.04
- Sine first 0.43 ± 0.25 0.47 ± 0.19 0.69 ± 1.68 -1.76 ± 2.07 0.09 ± 0.04 0.12 ± 0.05
- Sine last 1.81 ± 0.0 1.61 ± 0.0 -4.14 ± 0.04 -6.76 ± 0.16 0.13 ± 0.0 0.1 ± 0.0
- All ReLU 1.8 ± 0.0 1.38 ± 0.0 -4.63 ± 0.05 -6.82 ± 0.14 0.12 ± 0.0 0.09 ± 0.0

Silence 1.65 ± 0.0 1.77 ± 0.0 -1.31 ± 0.0 -4.62 ± 0.0 0.16 ± 0.00 0.16 ± 0.00
White noise 1.06 ± 0.27 1.06 ± 0.32 -5.43 ± 3.14 -9.31 ± 2.59 2.27 ± 0.06 2.32 ± 0.04

Table 6.4: Evaluation metrics CDPAM,
CSIG and multi resolution STFT MSE
scores of activation ablation setups for
NSYNTH datasets. For CDPAM and
multi resolution STFT MSE a lower
score is better, for CSIG representing
sample quality in NSYNTH datasets a
higher score is better. Silence and white
noise (µ = 0, σ = 1) scores reported for
reference.

Absolute fidelity evaluation

Considering table 6.6, we make the following observations regarding
the absolute fidelity of reconstructed samples fi for the different
parameterizations of ϕi & p(θ|z) regarding activation functions:
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Architecture LSD: Overall + Sample quality CSIG: Noise

π-GAN 0.27 ± 0.12 0.59 ± 1.26
- Sine first 0.31 ± 0.17 1.39 ± 1.06
- Sine last 0.49 ± 0.0 -0.68 ± 0.04
- All ReLU 0.45 ± 0.0 -0.67 ± 0.04

Silence 0.74 ± 0.0 -2.05 ± 0.0
White noise 7.27 ± 0.07 -1.24 ± 1.93

Table 6.5: LSD ×10 and CSIG scores
of all activation ablation setups for the
Speech Commands dataset. For both
metrics lower is better. Silence and
white noise (µ = 0, σ = 1) scores
reported for reference.

1. π-GAN: best absolute fidelity for NSYNTH Diverse and Speech
Commands.

2. π-GAN Sine first: best absolute fidelity for NSYNTH Keyboard.

Architecture NSYNTH Diverse NSYNTH Keyboard Speech Commands

π-GAN 1.32 ± 0.3 4.48 ± 1.02 0.85 ± 0.01
- Sine first 3.1 ± 1.57 4.29 ± 0.48 1.25 ± 0.03
- Sine last 34.45 ± 0.0 44.93 ± 0.0 2.42 ± 0.0
- All ReLU 38.57 ± 0.0 49.1 ± 0.0 2.39 ± 0.0

Silence 46.19 ± 0.0 78.74 ± 0.0 7.48 ± 0.0
White noise 1061.49 ± 12.03 1094.74 ± 13.56 1023.18 ± 11.56

Table 6.6: Mean and standard deviation
of MSE ×103 statistics of batches (128
samples) of synthesized samples in
the 5000th epoch of all models with
best performing hyperparameters in
activation ablation setups. Silence and
white noise (µ = 0, σ = 1) errors
reported for reference.

6.2.2 Results: Conditioning mechanism

Next, we examine the effect of changing the conditioning mecha-
nism of π-GAN. We evaluate the performance of π-GAN when the
network is conditioned by latent concatenation instead of FilM. We
compare concatenation in the first and middle layer, as in DeepSDF10, 10 Park et al., DeepSDF, 2019.
and concatenation in every layer until the second-last layer, as in IM-
NET11. Tables are moved to the appendix becuase do not bring new 11 Chen and Hao Zhang, Learning Implicit

Fields for Generative Shape Modeling, 2019.information next to the observations made below. See table 1 for the
perceptual fidelity scores for NSYNTH datasets, and table 3 for the
perceptual fidelity scores for Speech Commands. Absolute fidelity
scores for all datasets are reported in table 3.

Perceptual- and absolute fidelity evaluation

Considering tables 1, 2 and ?? we see that for all datasets, all archi-
tectures without FiLM conditioning drastically drop performance for
absolute fidelity, overall-, and sample quality metrics, resulting in
scores close to silence.

6.2.3 Results: Latent mapping network

Next, we examine the effect of changing the depth of the latent map-
ping network implemented in π-GAN. We evaluate the performance
of π-GAN when the latent mapping network is deeper than in the
original implementation of π-GAN, five layers instead of three, and
when the latent mapping network is minimized, consisting of only
one layer. Note that in this comparison the total parameter count
of the architectures is not kept constant, which is the case for all
other experiments. See table 6.7 for the perceptual fidelity scores for
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NSYNTH datasets, and table 6.8 for the perceptual fidelity scores
for Speech Commands. Absolute fidelity scores for all datasets are
reported in table 6.9.

Perceptual fidelity evaluation

• For the NSYNTH keyboard dataset:

1. Minimal mapping layers result in a significant improvement
for sample quality and background noise level.

2. Five mapping layers result in a slight improvement in over-
all quality, where minimal mapping layers result in a slight
decrease in overall quality, but differences are insignificant.

• For Speech Commands minimizing the amount of latent mapping
layers shows positive results for all metrics.

• For the NSYNTH diverse dataset reconstructions of the original
latent mapping network of π-GAN show best results across all
metrics, but differences with five mapping layers are insignificant.

CDPAM: Overall quality CSIG: Sample quality Multi STFT MSE: Noise
Architecture Diverse Keyboard Diverse Keyboard Diverse Keyboard

π-GAN 0.35 ± 0.24 0.48 ± 0.18 1.38 ± 1.84 -1.97 ± 2.45 0.06 ± 0.02 0.14 ± 0.04
- Min mapping 0.56 ± 0.26 0.49 ± 0.21 0.08 ± 1.66 -0.69 ± 2.67 0.14 ± 0.05 0.11 ± 0.03
- Five mapping 0.36 ± 0.24 0.47 ± 0.17 1.07 ± 1.98 -1.93 ± 2.49 0.06 ± 0.02 0.14 ± 0.03

Silence 1.65 ± 0.0 1.77 ± 0.0 -1.31 ± 0.0 -4.62 ± 0.0 0.16 ± 0.00 0.16 ± 0.00
White noise 1.06 ± 0.27 1.06 ± 0.32 -5.43 ± 3.14 -9.31 ± 2.59 2.27 ± 0.06 2.32 ± 0.04

Table 6.7: Evaluation metrics CDPAM,
CSIG and multi resolution STFT MSE
scores of latent mapping network
ablation setups for NSYNTH datasets.
For CDPAM and multi resolution
STFT MSE a lower score is better, for
CSIG representing sample quality in
NSYNTH datasets a higher score is
better. Silence and white noise (µ = 0,
σ = 1) scores reported for reference.

Architecture LSD: Overall / Sample quality CSIG: Noise

π-GAN 0.27 ± 0.12 0.59 ± 1.26
- Min mapping 0.22 ± 0.13 -0.52 ± 1.19
- Five mapping 0.28 ± 0.12 0.19 ± 1.26

Silence 0.74 ± 0.0 -2.05 ± 0.0
White noise 7.27 ± 0.07 -1.24 ± 1.93

Table 6.8: LSD ×10 and CSIG scores of
all latent mapping network ablation se-
tups for the Speech Commands dataset.
For both metrics lower is better. Silence
and white noise (µ = 0, σ = 1) scores
reported for reference.

Absolute fidelity evaluation

Considering table 6.9, we make the following observations regarding
the absolute fidelity of reconstructed samples fi for the different
latent mapping network depths:

1. Minimizing mapping layers has a positive effects on absolute
fidelity of reconstructions in NSYNTH Keyboard and Speech
Commands, but a negative effect for NSYNTH Diverse.

2. Five latent mapping layers on average performs similar to three
mapping layers (regular π-GAN), but shows more consistent
results between training runs.
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Architecture NSYNTH Diverse NSYNTH Keyboard Speech Commands

π-GAN 1.32 ± 0.3 4.48 ± 1.02 0.85 ± 0.01
- Min mapping 6.57 ± 0.17 3.83 ± 0.28 0.67 ± 0.0
- Five mapping 1.33 ± 0.07 4.18 ± 0.29 0.91 ± 0.01

Silence 46.19 ± 0.0 78.74 ± 0.0 7.48 ± 0.0
White noise 1061.49 ± 12.03 1094.74 ± 13.56 1023.18 ± 11.56

Table 6.9: Mean and standard deviation
of MSE ×103 statistics of batches (128
samples) of synthesized samples in
the 5000th epoch of all models with
best performing hyperparameters in
mapping network ablation setups.
Silence and white noise (µ = 0, σ = 1)
errors reported for reference.

6.2.4 Results: Network shape

Finally, we test the effects of network shape ablations on waveform
reconstruction evaluations. Parameter counts are kept constant. See
table 6.10 for the perceptual fidelity scores for NSYNTH datasets,
and table 6.11 for the perceptual fidelity scores for Speech Com-
mands. Absolute fidelity scores for all datasets are reported in table
6.12.

Perceptual fidelity evaluation

Considering tables 6.10 and table 6.11, we make the following obser-
vations regarding the perceptual fidelity of reconstructed samples fi

for the different network shape parameterizations of ϕi & p(θ|z):

• For the NSYNTH keyboard and Speech Commands datasets,
π-GAN Wide architecture outperforms original and other net-
work shape ablation architectures acrosss all metrics (except for
background noise levels in Speech Commands)

• π-GAN Shrinking showing best background noise levels for
Speech Commands, with a slight decrease in overall- and sample
quality compared to the original network shape.

• For the NSYNTH diverse dataset, all changes to the original net-
work shape result in worse reconstruction evaluations across all
metrics, although differences with π-GAN Deep are small.

CDPAM: Overall quality CSIG: Sample quality Multi STFT MSE: Noise
Architecture Diverse Keyboard Diverse Keyboard Diverse Keyboard

π-GAN 0.35 ± 0.24 0.48 ± 0.18 1.38 ± 1.84 -1.97 ± 2.45 0.06 ± 0.02 0.14 ± 0.04
- Wide 0.56 ± 0.28 0.36 ± 0.2 1.28 ± 1.37 -0.05 ± 2.73 0.11 ± 0.05 0.08 ± 0.02
- Deep 0.35 ± 0.22 0.52 ± 0.21 0.97 ± 1.93 -2.23 ± 2.47 0.06 ± 0.02 0.14 ± 0.05
- Shrinking 0.59 ± 0.28 0.52 ± 0.22 0.99 ± 1.25 -0.2 ± 2.65 0.13 ± 0.05 0.1 ± 0.03

Silence 1.65 ± 0.0 1.77 ± 0.0 -1.31 ± 0.0 -4.62 ± 0.0 0.16 ± 0.00 0.16 ± 0.00
White noise 1.06 ± 0.27 1.06 ± 0.32 -5.43 ± 3.14 -9.31 ± 2.59 2.27 ± 0.06 2.32 ± 0.04

Table 6.10: Evaluation metrics CDPAM,
CSIG and multi resolution STFT MSE
scores of network shape ablation setups
for NSYNTH datasets. For CDPAM
and multi resolution STFT MSE a lower
score is better, for CSIG representing
sample quality in NSYNTH datasets a
higher score is better. Silence and white
noise (µ = 0, σ = 1) scores reported for
reference.

Architecture LSD: Overall / Sample quality CSIG: Noise

π-GAN 0.27 ± 0.12 0.59 ± 1.26
- Wide 0.2 ± 0.11 0.53 ± 1.3
- Deep 0.33 ± 0.15 0.89 ± 1.27
- Shrinking 0.29 ± 0.12 0.33 ± 1.3

Silence 0.74 ± 0.0 -2.05 ± 0.0
White noise 7.27 ± 0.07 -1.24 ± 1.93

Table 6.11: LSD ×10 and CSIG scores
of all network shape ablation setups
for the Speech Commands dataset. For
both metrics lower is better. Silence
and white noise (µ = 0, σ = 1) scores
reported for reference.
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Absolute fidelity evaluation

Considering table 6.12, we make the following observations regard-
ing the absolute fidelity of reconstructed samples fi for the different
network shape parameterizations of ϕi & p(θ|z):

1. π-GAN Wide shows best absolute fidelity for NSYNTH Key-
board and Speech Commands12, in line with its reconstructions’ 12 This holds for all experiments with

Speech Commands in this workperceptual fidelity.

2. For the NSYNTH diverse dataset, all changes to the original net-
work shape result in worse absolute fidelity, although differences
with π-GAN Deep are small.

Architecture NSYNTH Diverse NSYNTH Keyboard Speech Commands

π-GAN 1.32 ± 0.3 4.48 ± 1.02 0.85 ± 0.01
- Wide 6.55 ± 0.16 1.64 ± 0.03 0.51 ± 0.01
- Deep 1.39 ± 0.12 6.19 ± 0.57 1.33 ± 0.32
- Shrinking 8.58 ± 1.7 5.57 ± 0.09 1.01 ± 0.08

Silence 46.19 ± 0.0 78.74 ± 0.0 7.48 ± 0.0
White noise 1061.49 ± 12.03 1094.74 ± 13.56 1023.18 ± 11.56

Table 6.12: Mean and standard devia-
tion of MSE ×103 statistics of batches
(128 samples) of synthesized samples
in the 5000th epoch of all models with
best performing hyperparameters in
network shape ablation setups. Silence
and white noise (µ = 0, σ = 1) errors
reported for reference.

6.2.5 Qualitative waveform analysis

Considering figure 6.2 (and figure 10 and 9 in the Appendix), we
make the following observations regarding the qualities of the re-
constructed waveforms in the NSYNTH keyboard dataset of the
different parameterizations of ϕi & p(θ|z):

• π-GAN Wide’s reconstruction in general resembles the waveform
best, consistent with results in table 6.4. Sine first, others ReLU
reconstruction comes very close.

• Sine first, others ReLU reconstruction is most smooth, although
not as smooth as waveGAN reconstructions shown in figure 6.1.
The reconstruction of π-GAN Wide comes very close in terms of
smoothness.

• The minimal mapping layers’ reconstruction in general resembles
the waveform slightly better than the π-GAN and five layer map-
ping network reconstructions, consistent with the results in table
6.7. See figure 10 in the Appendix.

• Ablations without FiLM conditioning show results close to si-
lence, consistent with the results in table 6.4. See figure 9 in the
Appendix.

6.2.6 Discussion

Interpreting results of all ablation experiments in the review above,
the following key findings emerge regarding influential hyperpa-
rameters and the shortcomings of INRs:
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Figure 6.2: First 200 timepoints of a
waveform validated to be represen-
tative as described in section 5.9.1 of
the NSYNTH keyboard dataset and
reconstructions of activation function
(left) network shape (right) ablation
setups.

△ Fidelity is highly sensitive to expressivity of parameteriza-
tions. The experimental results of WaveGAN, π-GAN Wide, and
π-GAN Sine first confirm intuitions that less expressive architec-
tures tend to require more uniformity in datasets for good fidelity
in representations13. But if enough uniformity is present they 13 To answer what types of diversity

demand which amounts of expres-
siveness is hard to answer with just
three datasets, but further discussed in
section 6.3.3 statement 6.3.3

perform better than more expressive architectures. This indicates
that representation fidelity is highly sensitive to parameterization
flexibility.

△ Increased expressivity comes with increased fitting speed Com-
paring the training curves of parameterizations of π-GAN param-
eterizations with different associated amounts of flexibility14, we 14 We compared training curves of

parameterizations of π-GAN versus
π-GAN Wide and π-GAN Sine first.

confirm intuitions that increased expressivity also comes with
significantly increased fitting speed.15 15 In section A.1 we reproduce this

behaviour in a simplified environment
on a (unconditioned) SIREN with
different ω0’s.

△ Expressivity pressure in ω0 search. The activation input scaling
parameters ω0 have large effects on the expressivity of π-GAN;
they strongly influence the balance between being able to repre-
sent fine detail and retaining smoothness in representations, see
section A.1. Our hyperparameter selection procedure described
in section 5.7 compares performance of ω0’s in a short training
regime of 200 epochs to find good solutions in the sensitive search
space of these parameters within computational limits. By doing
so, we optimize ω0’s for early training speed. By statement 6.2.6,
this creates a bias towards highly expressive ω0’s.

△ ω0’s are a blessing and curse. Fidelity of reconstructions is
highly sensitive to expressivity, see statement 6.2.6. Thus, by
statement 6.2.6, the hyperparameter selection procedure is likely
to have had negative effects on representation quality in all our
experiments in section 6.1 and 6.2. Thus, we argue that, with com-
putational limitations, the combination of the large effects of ω0’s
on the expressivity of π-GAN, more expressivity leading to faster
training and the high sensitivy of fidelity to expressivity of pa-
rameterizations is a main shortcoming in the process required to
learn good representations of distributions of audio waveforms
with conditional INRs. Activation scaling is a key ingredient to
the succes of SIRENs, but also creates difficult situations with
limited resources: ω0’s are a blessing and curse.
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□ Shallow latent mapping nets increase early training speed.
Optimal ω0’s for minimal latent network depth sit on the lower
bound of all compared setups. We hypothesize that although a
deeper latent mapping network is expected to be more expressive
in the long run, in the beginning of training a randomly initialized
deeper latent mapping network will slow down latent optimiza-
tion due to noisier gradients. Thus, a shallower latent mapping
net will facilitate more expressive behavior in a short training
regime, leveling the playing field and allowing less expressive, in
the longer term optimal, ω0’s to be selected. We think this is the
main reason that the performance of minimal mapping setups
outperforms others in NSYNTH Keyboard and Speech Com-
mands.

□ Large ω0 inconsistencies impede learning. Found optimal first
ω0’s for π-GAN Sine first in the short ω0 sweeps are 260, 350 and
930 respectively for Speech Commands, NSYNTH keyboard and
NSYNTH Diverse. This is significantly lower than average, see
figure 3. We initially expected that optimal first ω0’s would be
significantly higher to compensate for having no sine activations
in later layers. Looking closer at optimal ω0’s in other parameter-
izations of ϕi & p(θ|z) a trend about optimal ω0’s becomes clear.
ω0’s in the first layer are roughly between 3-7 times the magni-
tude of ω0’s in later layers. Larger inconsistencies in magnitude
seem to impede learning.16 With the effective hidden ω0’s mag- 16 Wide and Shrinking network shapes

are the most significant outliers to this
rule, see section A.1.2 for a further
analysis of trends in optimal ω0’s.

nitude being small in π-GAN Sine first, it can be expected that
optimal first ω0’s are lower than on average.

□ FiLM conditioning and first layer sine activations essential. In
line with theory, previous reported results17, and the baseline 17 Chan et al., Pi-GAN, 2020; Sitzmann et al.,

Implicit Neural Representations with Periodic
Activation Functions, 2020.

experiments our experiments show that first layer sine activations
are essential for representing any distribution of audio wave-
forms. However, we did not expect to FiLM conditioning to be as
essential. In preliminary experiments on smaller datasets of up
to 256 waveforms SIRENs conditioned via concatenation learned
reasonable representations. These findings support the notion
that the combination of FiLM conditioning with SIRENs is greater
than the sum of its parts.

□ Explaining the success of less expressive π-GANs. The ω0 se-
lection procedure induces suboptimal expressivity pressure, see
statement 6.2.6. This is likely an important factor for the success
of less expressive variants of π-GAN, as inherently less expres-
sive architectures (e.g. π-GAN Wide and π-GAN Sine first) limit
the maximum expressivity, minimizing the negative effects of
expressivity pressure.

□ Explaining the success of π-GAN Wide. Analyzing the network
shape ablation results they align nicely with previous observa-
tions and neural network theory. π-GAN Wide outperforms
all other ablations on Speech Commmands18 and NSYNTH 18 π-GAN Wide shows best absolute

fidelity for Speech Commmands across
all experiments in this work.
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Keyboard19 and performs almost identical to the best setup in 19 π-GAN Wide shows best overall- and
sample quality for NSYNTH Keyboard
across all experiments in this work.

NSYNTH Diverse, the original formulation of π-GAN, except for
absolute fidelity. We hypothesize that π-GAN Wide turned out to
be the optimal setup for the following reasons:

1. Lower compositional depth of sine nonlinearities results in a
less expressive architecture, as argued in 6.2.6

2. Wide networks tend to have more convex optimization land-
scapes than deeper networks20, something that π-GAN should 20 Nguyen and Hein, “The Loss Surface of

Deep and Wide Neural Networks”, n.d.benefit from argued in statement 6.1.2.
3. FiLM conditioning parameters γ and β are shared over layers.

Due to the extra width, FiLM controls more features and due to
the decreased depth every FiLM parameter is shared between
fewer features.

6.3 Proposed extension experiments
In this section we aim to answer the following question:

• How can the main shortcomings in audio waveform represen-
tations learned by conditional INRs and the process required to
learn these representations be addressed?

In section 6.1 we identify local waveform inconsistencies perceived
as noisy components as the main shortcoming of audio waveform
representations learned by conditional sinusoidal INRs. We argue
this is caused by the high density of stationary points within these
networks. In section 6.2 we identify the process of optimizing ω0’s in
a short training regime to have amplifying effects on the amount of
local waveform inconsistencies. We argue this happens because this
process enforces a selection pressure towards more expressive ω0’s.

In section A.1 we validate these observations in a simplified and
controlled environment, then prototype methods to cope with ex-
pressivity pressure post hoc and methods to circumvent having to
optimize ω0’s altogether.

To answer if the shortcomings of audio waveform representations
learned by conditional INRs can be adressed we test the methods
validated in section A.1:

• Weight regularization: coping with expressivity pressure post
hoc:

– Train previously optimized ω0 parameterizations with weight
regularization.

– Train previously optimized ω0 parameterizations with linearly
decreasing weight regularization.

• Progressive activation scaling: circumventing the ω0 optimiza-
tion process:
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– Train with progressively introducing nodes with higher activa-
tion scalings (ω0’s) in the first SIREN layer.

Observations. We summarize the most important observations
regarding the questions we aim to answer in this section:

• For NSYNTH Keyboard and Speech Commands, applying con-
stant weight regularization generally improves perceptual fidelity
of reconstructions robust to the introduced hyperparameter λ. For
optimal values of λ, reconstructions show the best, or close to the
best results across all experiments reported in this work.

• Progressive weight regularization shows less robustness to λ and
generally lower perceptual- and absolute fidelity scores.

• Progressive activation scaling shows very robust results with
respect to hyperparameters, but is less robust with respect to
dataset characteristics for perceptual fidelity. Overall- and sample
quality in Speech Commands is improved for all ω0 ranges that
did not crash early due to NaN losses, resulting in the best scores
across all experiments in this work, but these metrics underper-
form for other datasets. Absulute fidelity shows less gains, but is
more robust to dataset characteristics.

• Qualitative waveform analyisis suggests improved smoothness
and resemblence compared to WaveGAN for optimal weight
regularization hyperparameters.

Conclusions. We summarize the key findings of our analysis of
the experimental results reported in this section:

• Progressive activation scaling is an effective method for circum-
venting any hyperparameter tuning, but the method is not robust
to a wide variety of dataset characteristics.

• Constant weight regularization proves to be an effective method
for countering associated shortcomings of audio waveform rep-
resentations learned by conditional INRs. It is more robust to
dataset characteristics than progressive activation scaling, but less
robust with respect to its introduced hyperparameter λ.

• Progressive weight regularization is an inferior method compared
to constant weight regularization.

• NSynth Diverse does not benefit from any of the proposed meth-
ods, however it is unclear whether this is due to diversity in base
frequencies and timbres, the higher presence of noisy compo-
nents, lack of silence, or a combination of these.

6.3.1 Results: Weight regularization

We examine the effect of applying weight regularization to π-GAN
after optimizing ω0’s in a short training regime. Weight regular-
ization is applied for different values of λ as described in section
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5.4, resulting in the objective function shown in equation A.1. See
table 6.13 for the perceptual fidelity scores for NSYNTH datasets,
and table 6.14 for the perceptual fidelity scores for Speech Com-
mands. Absolute fidelity scores for all datasets are reported in table
6.15. Figure 6.3 shows the first 200 samples of a waveform from the
NSYNTH keyboard dataset and reconstructions of the proposed
weight regularization setups.

Perceptual fidelity evaluation

Considering tables 6.13 and table 6.14, we make the following obser-
vations regarding the perceptual fidelity of reconstructed samples fi

for the different weight regularization implementaions and values of
λ:

• Results for constant and progressive weight regularization in
Speech Commands are very robust, all tested values of λ consis-
tently improve results, except for runs that crashed due to NaN
losses.

• Results for constant weight regularization in NSYNTH keyboard
are robust, a large range of values of λ perform better or similar in
sample quality and background noise levels.

• For the NSYNTH Keyboard dataset, constant weight regular-
ization with λ = 10 shows best background noise levels over all
experiments in this work.

• For Speech Commands, constant weight regularization with
λ = 1 shows best overall- and sample quality over all weight
regularization setups.

CDPAM: Overall quality Multi STFT MSE: Noise CSIG: Sample quality
Diverse Keyboard Diverse Keyboard Diverse Keyboard

π-GAN 0.35 ± 0.24 0.48 ± 0.18 0.06 ± 0.02 0.14 ± 0.04 1.38 ± 1.84 -1.97 ± 2.45

Prog.50 Wϕ reg. nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
Prog.30 Wϕ reg. nan ± nan 0.72 ± 0.08 nan ± nan 0.06 ± 0.02 nan ± nan -2.92 ± 0.13
Prog.10 Wϕ reg. 1.16 ± 0.03 0.76 ± 0.05 0.07 ± 0.0 0.04 ± 0.0 -4.04 ± 0.32 -2.33 ± 0.32
Const.30 Wϕ reg. 1.11 ± 0.01 0.75 ± 0.01 0.08 ± 0.0 0.05 ± 0.0 -3.8 ± 0.51 -2.02 ± 1.69
Const.10 Wϕ reg. 1.11 ± 0.05 0.71 ± 0.05 0.07 ± 0.0 0.04 ± 0.0 -4.34 ± 0.27 -1.04 ± 0.05
Const.1 Wϕ reg. 1.18 ± 0.04 0.78 ± 0.04 0.08 ± 0.0 0.05 ± 0.01 -4.12 ± 0.2 -2.81 ± 0.24

Silence 1.65 ± 0.0 1.77 ± 0.0 0.16 ± 0.00 0.16 ± 0.00 -1.31 ± 0.0 -4.62 ± 0.0
White noise 1.06 ± 0.27 1.06 ± 0.32 2.27 ± 0.06 2.32 ± 0.04 -5.43 ± 3.14 -9.31 ± 2.59

Table 6.13: Evaluation metrics CDPAM,
CSIG and multi resolution STFT MSE
scores of proposed weight regular-
ization setups for NSYNTH datasets.
For CDPAM and multi resolution
STFT MSE a lower score is better, for
CSIG representing sample quality in
NSYNTH datasets a higher score is
better. Silence and white noise (µ = 0,
σ = 1) scores reported for reference.

Absolute fidelity evaluation

Considering table 6.15, we make the following observations regard-
ing the absolute fidelity of reconstructed samples fi for the different
weight regularization implementaions and values of λ:

• For the NSYNTH Keyboard dataset, constant weight regular-
ization shows improved absolute fidelity for all tested values of
λ.
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LSD: Overall / Sample quality CSIG: Noise
Speechcommands_ Speechcommands_

π-GAN 0.27 ± 0.12 0.59 ± 1.26

Prog.50 Wϕ reg. nan ± nan nan ± nan
Prog.30 Wϕ reg. 0.13 ± 0.0 -0.4 ± 0.0
Prog.10 Wϕ reg. 0.13 ± 0.0 -0.26 ± 0.0
Const.30 Wϕ reg. 0.1 ± 0.03 1.79 ± 0.28
Const.10 Wϕ reg. 0.12 ± 0.01 -0.58 ± 0.2
Const.1 Wϕ reg. 0.06 ± 0.0 0.18 ± 0.44

Silence 0.74 ± 0.0 -2.05 ± 0.0
White noise 7.27 ± 0.07 -1.24 ± 1.93

Table 6.14: LSD ×10 and CSIG scores of
all proposed weight regularization se-
tups for the Speech Commands dataset.
For both metrics lower is better. Silence
and white noise (µ = 0, σ = 1) scores
reported for reference.

• For the NSYNTH Keyboard dataset, progressive weight regular-
ization with a starting value of λ = 10 shows best absolute fidelity
over all experiments in this work.

• Other datasets show lower absolute fidelity after applying any
weight regularization method with any value of λ.

Architecture NSYNTH Diverse NSYNTH Keyboard Speech Commands

π-GAN 1.32 ± 0.3 4.48 ± 1.02 0.85 ± 0.01

Prog.50 Wϕ reg. nan ± nan nan ± nan nan ± nan
Prog.30 Wϕ reg. nan ± nan 9.21 ± 7.79 16.41 ± 0.0
Prog.10 Wϕ reg. 4.78 ± 0.02 0.76 ± 0.09 16.41 ± 0.0
Const.30 Wϕ reg. 10.52 ± 0.56 2.17 ± 0.52 11.19 ± 5.24
Const.10 Wϕ reg. 4.53 ± 0.22 0.85 ± 0.1 14.86 ± 1.46
Const.1 Wϕ reg. 4.27 ± 0.2 1.0 ± 0.29 3.71 ± 0.0

Silence 46.19 ± 0.0 78.74 ± 0.0 7.48 ± 0.0
White noise 1061.49 ± 12.03 1094.74 ± 13.56 1023.18 ± 11.56

Table 6.15: Mean and standard devia-
tion of MSE ×103 statistics of batches
(128 samples) of synthesized samples
in the 5000th epoch of all models in
proposed weight regularization setups.
Silence and white noise (µ = 0, σ = 1)
errors reported for reference.

6.3.2 Results: Progressive activation scaling

We examine the effect of the proposed method to the original formu-
lation of π-GAN. Results specified as using original ω0’s used previ-
ously found optimal ω0 in searches to simulate the effectiveness of
the proposed method as a post hoc measure against the expressivity
pressure observed in the short training regime. To validate the effec-
tiveness and robustness of the proposed method as a replacement
for optimizing ω0’s in a short training regime the other setups did
not use previous ω0 search results. See table 6.16 for the perceptual
fidelity scores for NSYNTH datasets, and table 6.17 for the percep-
tual fidelity scores for Speech Commands. Absolute fidelity scores
for all datasets are reported in table 6.18. Figure 11 shows the first
200 samples of a waveform from the NSYNTH keyboard dataset
and reconstructions of the proposed progressive activation scaling
setups.

Perceptual fidelity evaluation

Considering tables 6.16 and table 6.17, we make the following obser-
vations regarding the perceptual fidelity of reconstructed samples fi

for the different progressive activation scaling ranges:
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• For Speech Commands, overall- and sample quality is signifi-
cantly improved for all ω0 ranges that did not crash early due to
NaN losses.

• Background noise levels for NSYNTH keyboard are improved
when progressively introducing activation scalings for all ω0

ranges that did not crash early due to NaN losses.

• Overall- and sample quality is significantly worse when progres-
sively introducing activation scalings in NSYNTH Keyboard and
NSYNTH Diverse datasets.

• For Speech Commands, progressively introducing activation scal-
ings up to 10.000, with hidden activation scalings of 300 shows
best overall- and sample quality of across all experiments in this
work.

CDPAM: Overall quality Multi STFT MSE: Noise CSIG: Sample quality
Diverse Keyboard Diverse Keyboard Diverse Keyboard

π-GAN 0.35 ± 0.24 0.48 ± 0.18 0.06 ± 0.02 0.14 ± 0.04 1.38 ± 1.84 -1.97 ± 2.45

Prog. orig. ω0 1.16 ± 0.01 0.87 ± 0.01 0.08 ± 0.0 0.11 ± 0.01 -1.6 ± 0.3 -3.07 ± 0.34
Prog.3000

30 ω0 nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan nan ± nan
Prog.3000

300 ω0 1.19 ± 0.03 nan ± nan 0.1 ± 0.01 nan ± nan -3.38 ± 0.83 nan ± nan
Prog.3000

1000 ω0 1.18 ± 0.03 0.82 ± 0.01 0.09 ± 0.0 0.1 ± 0.02 -2.19 ± 0.52 -2.46 ± 0.32
Prog.10000

30 ω0 1.21 ± 0.0 0.84 ± 0.01 0.08 ± 0.0 0.07 ± 0.01 -2.39 ± 0.13 -2.73 ± 0.39
Prog.10000

300 ω0 1.25 ± 0.02 0.89 ± 0.02 0.11 ± 0.0 0.11 ± 0.02 -5.28 ± 0.18 -5.27 ± 0.33

Silence 1.65 ± 0.0 1.77 ± 0.0 0.16 ± 0.00 0.16 ± 0.00 -1.31 ± 0.0 -4.62 ± 0.0
White noise 1.06 ± 0.27 1.06 ± 0.32 2.27 ± 0.06 2.32 ± 0.04 -5.43 ± 3.14 -9.31 ± 2.59

Table 6.16: Evaluation metrics CD-
PAM, CSIG and multi resolution STFT
MSE scores of different progressive
activation scaling setups for NSYNTH
datasets. For CDPAM and multi resolu-
tion STFT MSE a lower score is better,
for CSIG representing sample quality
in NSYNTH datasets a higher score is
better. Silence and white noise (µ = 0,
σ = 1) scores reported for reference.

LSD: Overall / Sample quality CSIG: Noise
Speechcommands_ Speechcommands_

π-GAN 0.27 ± 0.12 0.59 ± 1.26

Prog. orig. ω0 0.06 ± 0.0 0.76 ± 0.06
Prog.3000

30 ω0 nan ± nan nan ± nan
Prog.3000

300 ω0 nan ± nan nan ± nan
Prog.3000

1000 ω0 0.05 ± 0.0 0.82 ± 0.05
Prog.10000

30 ω0 0.05 ± 0.0 -0.21 ± 0.03
Prog.10000

300 ω0 0.04 ± 0.0 0.88 ± 0.03

Silence 0.74 ± 0.0 -2.05 ± 0.0
White noise 7.27 ± 0.07 -1.24 ± 1.93

Table 6.17: LSD ×10 and CSIG scores of
all progressive activation scaling setups
for the Speech Commands dataset. For
both metrics lower is better. Silence
and white noise (µ = 0, σ = 1) scores
reported for reference.

Absolute fidelity evaluation

Considering table 6.18, we make the following observations regard-
ing the absolute fidelity of reconstructed samples fi for the different
parameterizations of ϕi & p(θ|z) and different progressive activation
scaling ranges:

1. For the NSYNTH Keyboard dataset, progressively introducing
activation scalings up to 10.000 shows improved absolute fidelity
compared to the original π-GAN scores, robust to a wide range of
hidden omega0 values.

2. Other datasets show lower absolute fidelity when applying pro-
gressive activation scaling in any range.
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Architecture NSYNTH Diverse NSYNTH Keyboard Speech Commands

π-GAN 1.32 ± 0.3 4.48 ± 1.02 0.85 ± 0.01

Prog. orig. ω0 4.58 ± 0.44 6.84 ± 2.15 3.62 ± 0.3
Prog.3000

30 ω0 nan ± nan nan ± nan nan ± nan
Prog.3000

300 ω0 4.73 ± 0.3 nan ± nan nan ± nan
Prog.3000

1000 ω0 4.99 ± 0.03 6.21 ± 3.25 2.43 ± 0.24
Prog.10000

30 ω0 4.19 ± 0.15 1.71 ± 0.31 2.66 ± 0.16
Prog.10000

300 ω0 5.5 ± 0.04 3.62 ± 1.11 1.46 ± 0.11

Silence 46.19 ± 0.0 78.74 ± 0.0 7.48 ± 0.0
White noise 1061.49 ± 12.03 1094.74 ± 13.56 1023.18 ± 11.56

Table 6.18: Mean and standard devia-
tion of MSE ×103 statistics of batches
(128 samples) of synthesized samples
in the 5000th epoch of all models with
best performing hyperparameters in
proposed progressive latent scaling
setups. Silence and white noise (µ = 0,
σ = 1) errors reported for reference.

Qualitative waveform analysis

Considering figure 6.3 (and figure 11 in the appendix), we make the
following observations regarding the qualities of the reconstructed
waveforms fi for the different weight regularization implemen-
tations with different values of λ and progressively introducing
activation scalings in different ranges:

• Setups with a small amount of weight regularization resemble
the waveform very well, the best reconstructions resemble the
waveform closer than WaveGANs reconstruction.

• It is clearly visible that larger values of λ make the decoder less
expressive.

• All waveforms are significantly smoother than those in previous
results.

• Waveforms reconstructed with a higher range of progressive
activation scalings still show chaotic behaviour, while those re-
constructed with a lower range of progressive activation scalings
are not expressive enough.

6.3.3 Discussion

Interpreting results of all proposed extension experiments in the
review above, the following key findings emerge regarding the ef-
fectiveness of the tested methods to counter shortcomings of audio
waveform representations learned by conditional INRs:

• Expressiveness demanding factors in datasets. Across all exper-
iments in this work for NSYNTH Diverse, none improved upon
absolute- or perceptual fidelity of the original formulation of π-
GAN, neither did the methods tested in this section. Most of the
experiments suppressed expressiveness in some way, except for
π-gan Deep and π-gan with five latent mapping layers21, which 21 We argue more latent mapping layers

mostly increases expressivity combined
with short training ω0 optimization,
in which it causes extra expressivity
by slowing early training progress,
making the search process find higher
optimal values for ω0.

perform as good as π-GAN. This shows that it demands most
expressiveness of all three datasets, however it is unclear whether
this is due to diversity in base frequencies and timbres, the higher
presence of noisy components, lack of silence, or a combination
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Figure 6.3: First 200 timepoints of a
waveform validated to be represen-
tative as described in section 5.9.1 of
the NSYNTH keyboard dataset and re-
constructions of weight regularization
setups.

of these. To get a more clear view of this, experiments with more
fine-grained differences between datasets are required.22 22 The differences between NSYNTH

Diverse and NSYNTH Keyboard (de-
manding the least amount of expressiv-
ity) must be explained by the diversity
in base frequencies and timbres and the
presence of noisy components, while
the differences between NSYNTH
keyboard and Speech commands must
be explained by heterogeneity in onset
times, differences in the amount of
silence and spectral incoherence.

• Constant weight regularization proves to be a good method to
cope with the expressivity of conditional INRs with short training
optimized ω0’s. The introduced hyperparameter λ is quite robust,
showing similar results for large ranges in all tested datasets. For
NSYNTH Keyboard and Speech Commands, reconstructions
generally improve in terms of perceptual fidelity and show the
best, or close to the best results for optimal values of λ across all
experiments reported in this work. For NSYNTH keyboard this
also holds for absolute fidelity.

• Progressive weight regularization compared to constant weight
regularization shows results with less robustness to λ and gen-
erally lower perceptual- and absolute fidelity scores making the
method inferior to constant weight regularization. However, in
NSYNTH Keyboard for optimal values of λ it shows the highest
perceptual fidelity across all experiments reported in this work.
The inferior robustness to values of λ compared to constant
weight regularization contrasts with the results of experiments
with SIRENs reconstructing single waveforms in section A.1.3.
We hypothesize this contrast is caused by the relatively more
complex loss landscape of conditional INRs and the fact that we
did not run experiments for different amounts of epochs in which
λ is decreases to zero. We did not do this because if it would be
necessary, the introduced hyperparameter complexity of this
method would defeat its own purpose.

• Progressive activation scaling shows strong and robust results
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with respect to hyperparameters. For perceptual fidelity of
Speech Commands, overall- and sample quality is significantly
improved for all ω0 ranges that did not crash early due to NaN
losses, resulting in the best scores across all experiments in this
work. However, the methods perceptual fidelity scores are less
robust to dataset characteristics, as both NSYNTH datasets gen-
erally show lower perceptual fidelity. Absolute fidelity is slightly
higher for NSYTNH Keyboard and slightly lower for Speech
Commands, compared to the optimized ω0 π-GAN setups. Note
that we did not experiment with different amounts of epochs in
which the ω0’s are introduced, indicating a high likelihood of
robustness with respect to this parameter as well. Progressive ac-
tivation scaling is robust with respect to its hyperparameters, thus
an effective method for circumventing any hyperparameter tun-
ing, but it is not robust to a wide variety of dataset characteristics.

• Oscillatory bias in less expressive sinusoidal INRs. Figure 6.3
shows how sinusoidal INRs with larger amounts of weight regu-
larization have trouble inhibiting periodic behaviour in the base
frequency, indicating a strong oscillatory bias. This can be ex-
plained by the fact that nested sines with no activation scaling
behave very similar to regular sines. With large weight regular-
ization the activation scaling is minimized by reduced network
parameters and the network starts to exhibit behaviour similar
to having a sparse fourier basis in the range of base frequencies
in the signal. As shown in the inhibition difficulties in figure 6.3,
this results in a strong oscillitory bias that is detrimental to re-
construction performance in waveforms with dynamic spectral
content, because the global support of sinusoids requires the net-
work to supress any non-static spectral content. Nested sinusoids
with larger amounts of input scaling quickly introduce more and
higher frequencies. The input scalings optimal in our experiments
result in functions biased for high amounts of extremely high
frequency functions, because this provides more flexibility for
suppressing arbitrary function regions essential for representing
non-static spectral content.





7
∣∣∣∣ Conclusion and future work

In this work we explored the potential of applying implicit neural
representations in generative modelling of audio waveforms, aban-
doning the classical way to represent audio as discretized vectors
and instead parameterize individual data points by continuous func-
tions. Implicit neural representations are an emerging paradigm,
at the time of writing published applications in the generative do-
main are scarce, and to our knowledge no research has been done
applying it in the field of audio synthesis.

To this extent, we studied the effects of various parameterizations
of implicit architectures, conditioning mechanisms and methods for
inferring latent embeddings on several (perceptual) quality met-
rics of learned representations. We compared results across three
datasets, two containing musical notes and one containing speech,
relating dataset characteristics to reconstruction performance. We
proposed and validated two methods to cope with deficiencies ob-
served in our experiments.

Predominantly focussing on sinusoidal representation networks
conditioned using feature wise linear modulation, we discussed both
the power and inherent limitations of this implicit generative archi-
tecture compared to convolutional alternatives, touching upon topics
such as expressivity, label noise robustness and encoder compatibil-
ity.

7.1 Conclusion
We conclude that conditional INRs show great potential for rep-
resenting distributions of audio waveforms with perceptual- and
absolute fidelity. To foster reproducible research, we published the
source code of this research on GitHub.1 We summarize the key 1 https://github.com/janzuiderveld/continuous-

audio-representationsfindings of this work:

◦ Convolutional encoders significantly impede learning for sinu-
soidal INR’s conditioned using feature wise linear modulation
(FiLM) due to incompatibility between the architectures. By
learning representations in an autodecoder setup there are no in-
troduced bottlenecks or biases external to the decoder. We argue

https://github.com/janzuiderveld/continuous-audio-representations
https://github.com/janzuiderveld/continuous-audio-representations
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this is optimal for exploring the representation characteristics of
decoder networks.

♢ Sinusoidal INR’s conditioned using FiLM (π-GAN) exhibit ex-
ceptional expressivity, making them suited for modelling distri-
butions of high-frequency one-dimensional continuous functions
such as audio. This INR parameterization outperforms convo-
lutional architectures with equal parameter counts in absolute
fidelity of learned representations in all tested datasets. But, the
perceptual fidelity of representations is inferior to those of trans-
posed convolution based architectures in more uniform datasets
as it introduces local waveform inconsistencies in reconstructions.

□ INR parameterizations without sine activations in the first layer
and/or with conditioning only by concatenation are ill-suited for
representing a distribution of audio waveforms.

• Sinusoidal INR’s conditioned using FiLM have strict requirements
for local consistency in loss landscapes. Based on our experimen-
tal results and neural network theory we derive this is caused by
noisy signal propagation within these networks. We argue that
the periodicity of sine activations (resulting in recurrent non-
monotonic regions) is the origin of this deficiency, and that large
activation scaling values (ω0’s) and high compositional depth
have an amplifying effect on it.

□ Our experiments show that exactly these three factors (sine ac-
tivations, ω0’s and compositional depth) are most influential
in the expressivity, smoothness and final performance of INR’s
conditioned using FiLM.

□ When fine-tuning the considered model hyperparameters of
sinusoidal INR’s conditioned using FiLM, they outperform the
baseline convolutional decoder in selected perceptual fidelity
metrics across all tested datasets. We develop several heuristics
for determining model hyperparameters according to dataset
characteristics.

△ We show that representation fidelity in sinusoidal INR’s is very
sensitive to ω0 values. When dealing with limited computing
resources it is infeasible to optimize ω0’s over full training runs.
Optimizing ω0’s in a short training regime can be problematic
as it induces pressure on expressivity, which can have negative
effects on perceptual fidelity of representations. To this extent we
make the following contributions:

1. We propose and validate post hoc methods for taming the ex-
pressivity of activation scaling hyperparameters found optimal
in short training runs, with success in two out of three tested
datasets.

2. We propose and validate a method for removing the need to
optimize activation scaling hyperparameters altogether. One
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out of three datasets shows robust and significant perceptual
fidelity gains.

We will conclude this work with a brief description of ideas for
future work.

7.2 Future work
Finally, we propose several ideas for future work in the domain of
implicit audio synthesis and explain our intuitions:

• Considering the noise introduced by the high density of station-
ary points in sinusoidal representation network layers with high
ω0’s (see section 6.1.2) resulting in noisy representations and
gradients, and possibly reinforcing sensitivity to label noise, we
propose to apply gradient clipping, as this could allow more sta-
ble learning and higher learning rates.

• Taking the inferior label noise robustness observed in sinusoidal
representation networks conditioned using feature wise linear
modulation into account, methods for dealing with noisy loss sig-
nals would be another promising avenue. This would allow the
usage of spectral and perceptual reconstruction losses, which cor-
relate much better with perceptual qualities than MSE. Combined
with the expressivity of sinusoidal representation networks con-
ditioned using feature wise linear modulation this could greatly
improve perceptual qualities of represented distributions. One
might hope that gradient clipping can also aid in mitigating the
detrimental effects of locally inconsistent loss functions on learn-
ing. However, it has been proven that in classification problems
standard gradient clipping does not in general provide robustness
to label noise2. 2 Menon et al., “CAN GRADIENT CLIPPING

MITIGATE LABEL NOISE?”, 2020.
• The compositional nature of SIRENs makes it difficult to ana-

lyze representation characteristics in a signal processing context.
Multiplicative filter networks3 (MFNs) can be viewed as linear 3 Fathony et al., “MULTIPLICATIVE FILTER

NETWORKS”, 2021.function approximators over an exponential number of Fourier
or Gabor basis functions. This establishes a connection of the net-
work architecture with the traditional Fourier and Gabor wavelet
transforms, which are extensively studied in literature and widely
used in many application domains, especially audio.

Comparisons with MFNs would be useful to indicate if the com-
positional depth of SIRENs form a substantial benefit. In the
experiments reported by the authors, MFNs show similar per-
formance as SIRENs in parameter equal experiments, and larger
gains in performance when increasing network depth and width.
We indeed found SIRENs to lack in terms of scaling gains. Com-
bined with the intuition that Fourier-based MFNs contain a strong
oscillatory bias, the architecture is a promising avenue for future
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research in the area of implicit audio synthesis. The authors re-
port however that SIRENs are more biased towards smoother re-
gions in the represented function, where in our experiments, the
lack of smoothness in representations of waveforms is arguably
the foremost downside of SIRENs.

• Another idea which looks promising in the light of our results,
still unexplored in current INR literature, is that of splitting the
classically fully-connected MLP parametrizing INR’s in multiple
parallel subnetworks. This could reduce the propagation of noise
induced at stationary points and cancel noise in output by aggre-
gating multiple independent noise sources. This argumentation is
supported by multiple research directions.

Assuming similar principles are shared between channels in
convolutional neural networks and subnetworks in INRs, sev-
eral publications4 show that increasing the amount of kernels in 4 H. Li et al., Visualizing the Loss Landscape of

Neural Nets, 2018; Hongyang Zhang et al.,
Deep Neural Networks with Multi-Branch
Architectures Are Less Non-Convex, 2018.

Resnets has profound effects on reducing chaotic behaviour of
loss landscapes.

Research in global optimality conditions of Haeffele & Vidal5 5 Haeffele and Vidal, “Global Optimality in
Neural Network Training”, 2017.concludes the following: “A final implication of our analysis is that

neural networks which generate the output by taking the sum of multiple
parallel subnetworks are highly conducive to efficient optimization.”6 6 The provided minimally sufficient

conditions to guarantee that local
minima are globally optimal in this
paper include that the output of every
parallel subnetwork is a positively
homogeneous function of the network
parameters, which does not hold
when applying periodic activations.
However, the authors indicate that
any networks’ optimization landscape
would benefit from consisting of a
linear combination of multiple parallel
subnetworks.

The concept of combining the outputs of parallel subnetworks
also has clear analogies to the field of ensemble methods, which
could provide further theoretical foundations relating to this idea.
For example, recent work of Fort et al7 shows how different ran-

7 Fort et al., Deep Ensembles, 2020.

domly initialized CNN’s trained for classification problems tend
to explore diverse modes in function space, resulting in improved
robustness. We found that averaging waveform reproductions of
independently trained conditional INR’s worked well in mitigat-
ing noisy components, indicating that similar principles might
apply.
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Appendix

A.1 Periodic activation scaling analysis
In this section we evaluate the severity of the negative effects of
the expressivity pressure created by optimizing in a short training
regime. Then, we test methods to counter this expressivity pres-
sure post hoc and methods to circumvent having to optimize ω0’s
altogether.

Experiments in the periodic activation scaling analysis section
consider SIRENs for reconstructing a single waveform. These ex-
periments are used to validate theories about the interaction be-
tween different SIREN parameterizations and output characteristics.
SIRENs are parameterized as in the audio experiments of Sitzmann
et al.8: 8 Sitzmann et al., Implicit Neural Represen-

tations with Periodic Activation Functions,
2020.1. 5 layers

2. 256 hidden units
3. First ω0: 3000
4. Hidden ω0: 30
5. Optimizer: Adam
6. Learning rate: 5 × 10−5

We assume that the behavior of a SIREN reconstructing a single
waveform is indicative for the behavior of a FiLMed SIREN recon-
structing a set of waveforms.

We fit using MSE as the objective function :

L =
1
M

M

∑
j=1

∥∥Φ(tj, zi))− Ampi(tj)
∥∥2 .

We test the effect of L2 weight regularization implemented as fol-
lows:

L =
1
M

M

∑
j=1

∥∥Φ(tj))− Ampi(tj)
∥∥2

+
λ

2
∥Wϕ∥2

A.1.1 Reconstructing mixed sines with different ω0’s

As noted by Sitzmann et al.9, the weights of a SIREN can be inter- 9 Sitzmann et al., Implicit Neural Represen-
tations with Periodic Activation Functions,
2020.

preted as angular frequencies, networks with larger weights output



86 REPRESENTING AUDIO IN A DISTRIBUTION OF CONTINUOUS FUNCTIONS

higher frequencies. omega0, or γ in the case of π-GAN, multiplies
the weights network weights by a constact factor, directly influenc-
ing the potential frequency output of the network and its flexibility
at finer scales.

Considering the results of all SIREN based parameterizations of
ϕ, we see perceived background noise in reconstructions (see figure
5.3) and rough waveform shapes (figure 6.1, 6.2) we hypothesize
that these parameterizations suffer from being too expressive, see
statement 6.2.6. We suspect that an important reason for this is that
the ω0 selection procedure (see section 6.1) which optimizes for re-
construction performance in a minimal amount of iterations (equa-
tion 4.7 after 200 epochs), favouring short term progress, resulting in
suboptimal expressiveness, see statement 6.2.6. We validate if opti-
mal ω0’s in a short amount of iterations indeed result in suboptimal
final performance.

We consider fitting a target signal consisting of two summed
sine waves of 1000 Hz and 6000 Hz with a duration of 1 second,
normalized to have an amplitude between -1 and 1. Fitting is done
at observations sampled at 16000 Hz. Results after 200 and 1000
iterations (after which models are converged) are shown in figure 1
and 2. Reported average MSE is calculated over the densely sampled
signal and reconstructions, as plotted in the figures.

We observe the following:

1. First ω0 values with lower magnitudes showing extremely sub-
optimal results in early training can turn out to be optimal in late
training.

2. Higher magnitudes of first ω0 take significanty less iterations to
reconstruct higher frequency components.

3. Higher magnitudes of first ω0 are quicker to overfit on sparsely
sampled target signal observations by introducing frequency
components higher than those present in the target signal.

4. SIRENs show spectral bias10. lower frequency signal components 10 Rahaman, Baratin, Arpit, Draxler, Lin,
F. Hamprecht, et al., “On the Spectral Bias of
Neural Networks”, 2019.

are approximated first.

5. SIRENs with lower first ω0 magnitudes show less variation be-
tween runs.

Observation 2 and 3 can be viewed the underlying reason for
observation 1. These results are in line with the hypothesis that
our ω0 selection procedure for the experiments in section 6.1 and
6.2 can be one of the reasons for the observed background noise in
respective experiments.

A.1.2 ω0 search space

Knowing the importance of ω0 magnitudes and the fact that optimal
results in early training are not guaranteed to result in optimal final
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Figure 1: SIRENs fitted to two mixed
sine waves of 1000Hz and 6000Hz after
200 iterations for different magnitudes
of ω0 first for 10 different seeds with
average MSE .

Figure 2: SIRENs fitted to two mixed
sine waves of 1000Hz and 6000Hz after
1000 iterations for different magnitudes
of ω0 first.
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performance, the question arises how to select ω0 magnitudes when
training until convergence for many values is unfeasible. Consid-
ering the direct relationship between ω0 magnitudes and spectral
content, a promising avenue seems to be to determine ω0 magni-
tudes by analyzing the frequency spectra of signals in the dataset
you aim to reconstruct. A robust analysis of the relation between
frequency spectra in a dataset and optimal ω0 magnitudes would
require training on many datasets with diverse spectral contents for
a Wide range of ω0 magnitudes until convergence, which is out of
the scope of this research.

However, if we assume that relations between optimal ω0’s in the
short training- and optimal ω0’s in the training until convergence
regime are similar and optimal ω0’s in the short training regime are
never of lower magnitude, analysis of the results of our ω0 sweeps
is useful. Heuristics for relations between optimal ω0’s in the short
training regime can then be used for shaping the upper limit of
the search space of optimal ω0’s in the training until convergence
regime.

To see if certain ϕ parameterizations affect optimal ω0’s in the
short training regime, we plot the 5% best perfoming ω0 values for
all autodecoder setups which have first- and hidden ω0 as parame-
ters and learned at a reasonable speed, see figure 3. We observe the
following:

• Alterations to network shape influence optimal ω0 values.

• Minimizing the mapping network influences optimal ω0 values.

• A deeper mapping network does not make a significant difference
for optimal ω0 values.

Then, we continue with the setups that show similar optimal ω0’s
across datasets: π-GAN vanilla and π-GAN five mapping. We again
plot the first ω0 and hidden ω0, this time of the top 30% of scores of
both setups combined, for every dataset, see figure 4. Dots are scaled
by score. We observe the following:

1. For NSYNTH Keyboard, first ω0 magnitudes do not matter much.
2. For Speech Commands, first ω0 needs to be between ± 500 and ±

1000.
3. For NSYNTH Diverse, first ω0 needs to be between ± 1600 and ±

2000.
→ More spectrally diverse datasets require larger first ω0’s.
→ Optimal hidden ω0 magnitudes never exceed ± 700

4. For NSYNTH datasets, a higher first ω0 demands a higher hidden
ω0. For Speech Commands this trend is less obvious.

→ More spectrally coherent11 datasets demand a more specific 11 Coherent as in containing pure tones,
not as in uniform.ratio between first ω0 and hidden ω0
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Figure 3: Scatterplot of first Ω0 and
hidden Ω0 of the top 5% best objective
error for for all autodecoder setups
which have first- and hidden ω0 as
parameters and learned at a reasonable
speed.

Figure 4: Scatterplot of first ω0 and
hidden Ω0 of the top 30% best objective
error of all runs in the ω0 sweeps of
π-GAN autoencoder, autodecoder,
minimal mapping and five mapping
setups. Dots are scaled by score.
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Relating these observations to the spectral anayisis of the datasets
described in section 5.5, they can be used as an indicator for deter-
mining the upper limit of search spaces of ω0’s in the training until
convergence regime for parameterizations of ϕ similar to π-GAN.
Keep in mind these observations are based on only three datapoints
(NSYNTH Keyboard, NSYNTH Diverse and Speech Commands).
Within these three samples, there are many potentially important
factors unvaried, such as dataset size, audio length and subsampling
ratio during training.

A.1.3 Coping with expressiveness pressure

Considering the scenario where we search optimal ω0’s in the short
training regime, we can think about methods to cope with associated
expressiveness pressure. The weights of a SIREN can be interpreted
as angular frequencies12. Thus, to suppress higher frequencies in 12 Sitzmann et al., Implicit Neural Represen-

tations with Periodic Activation Functions,
2020.

SIREN representations it might help to enforce weight regulariza-
tion.

We continue with the optimal ω′
0s found after 200 iterations in

the previous section (10000, 30), and apply weight regularization
as in equation A.1. We observe that convergence takes longer with
weight regularization, and train for 2000 iterations instead of 1000
in the previous experiment. The experiment is executed for different
values of λ: 0.1, 0.3, 1, see figure 5.

Figure 5: SIRENs fitted to two mixed
sine waves of 1000Hz and 6000Hz after
200 iterations for different values of λ
for 10 different seeds with average MSE
.

• For λ is 1, SIREN representations are still silent after 2000 itera-
tions

• Results are less sensitive to λ’s value than to the values of the
ω0’s.

• For λ’s below 1, reconstructions after 2000 iterations significantly
outperform optimal ω’s in previous setups.
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In this simplified scenario, weight regularization shows the effects
we hoped for. It seems that, if λ is not set too high, it succesfully
counters the flexibiltity pressure when searching for optimal ω’s in
the short training regime and imporoves upon earlier results. Al-
though this method introduces yet another hyperparameter and
increases required training iterations, the higher robustness of recon-
struction quality for λ’s compared to ω’s is a step forward.

Finally, we test if progressively reducing weight regularization
and progressively introducing nodes with higher activation scalings
(ω0’s) in the first SIREN layer can aid in making reconstructions
more robust towards hyperparameter values. We hope to find that
these methods will reduce overfitting by forcing SIRENs to ini-
tially use lower frequencies to approximate a signal. Then, when
the SIREN is allowed to use higher frequencies, these will only be
introduced if needed.

First, we again train for 2000 iterations and progressively decrease
λ linearly to zero in different amounts of iterations to gauge the
effect of this. For these experiments we selected a λ starting value of
1.5. See figure 6 for results.

Figure 6: SIRENs fitted to two mixed
sine waves of 1000Hz and 6000Hz after
200 iterations for different values of λ
for 10 different seeds with average MSE
.

• Progressively reducing weight regularization is not very sensitive
to the amount of iterations where λ is decreasing.

• Results show significantly more variance when there are a rela-
tivively large or small amount of training iterations left without
weight regularization.

• Progressively reducing weight regularization with an equally
amount of iterations where λ is decreasing versus where λ is zero
is optimal within tested runs.

Then, we fix the amount of iterations in which λ decreases to zero
and test for different values of λ to test robustness of reconstructions
with respect to this parameter. See figure 8 for results.
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Figure 7: SIRENs fitted to two mixed
sine waves of 1000Hz and 6000Hz after
200 iterations for different values of λ
for 10 different seeds with average MSE
.

• Results are more robust with respect to λ compared to non pro-
gressive weight regularization, although extreme values of λ still
results in degraded results.

• Reconstructions are slightly lower quality and contain more varia-
tion compared to constant weight regularization.

• The extra robustness comes at the cost of another hyperparameter;
in how many iterations to decrease λ to zero.

Finally, we once again train SIRENs for 2000 iterations and pro-
gressively introduce nodes with higher activation scalings (ω0’s) in
the first SIREN layer, without weight regularization. This method
was inspired by recent work by Hertz et al.13, where the authors pro- 13 Hertz et al., SAPE, 2021.
pose to apply a similar technique in ReLU P.E. MLPs (ReLU MLPs
with a Fourier based positional encoding in the first layer).

256 different entries for the first ω0’s are picked from a uniform
distribution between 1 and 10000, sorted, and then divided in 8
groups. At the beginning of training, all ω0’s are masked. The first
half of iterations is split in 8 periods (the amount of ω0 groups).
in the first half of each period a new group of ω0’s is linearly un-
masked, starting with the lowest magnitudes. In the second half of
each period the mask stays the same. In the second half of the prede-
termined amount of iterations, all ω0’s are unmasked and stay that
way14. See figure 8 for results. 14 This method was selected by testing

on a π-GAN setup with a dataset size
of 128 samples. We also tried selecting
ω0’s as evenly spaced numbers over a
specified interval and treating every ω0
value as it’s own group.

• Reconstructions do not improve upon previous results from
weight regularization and are on par with searching optimal
ω0’s in a short training regime.

• Reconstruction quality is relatively consistent for a large range of
ω0’s, making this approach require almost no hyperparameter
tuning for the considered scenarios.
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Figure 8: SIRENs fitted to two mixed
sine waves of 1000Hz and 6000Hz after
200 iterations for different values of λ
for 10 different seeds with average MSE
.

Discussion

• progressively introducing nodes with higher activation scalings
(ω0’s) in the first SIREN layer most robust solution, might be
able to circumvent hyperparamter search altogether, but does not
show optimal reconstruction quality

• Constant weight regularization shows best reconstruction quality.

• Progressive weight regularization sits in between the latter two
methods for robustness and reconstruction quality.

A.2 Unsuccessful experiments
Among others, the following ideas were evaluated in prelimiary
experiments, but resulted in inferior performance.

1. Using double precision

2. Many loss functions, including perceptual loss functions such as
multi resolution STFT and CDPAM.

3. Recurrent encoder (wav2vec)

4. ω0’s as trainable parameters

5. Hypernetwork: tried with initialization methods as described by
Sitzmann et al.15. 15 Sitzmann et al., Implicit Neural Represen-

tations with Periodic Activation Functions,
2020.6. Film conditioning: scaling ω0 with γ.

7. Progressive activation scaling: reported method was first vali-
dated on a π-GAN setup with a dataset size of 128 samples. We
also tried selecting ω0’s as evenly spaced numbers over a speci-
fied interval and treating every ω0 value as its own group, fading
them in one by one. These alterations performed slightly worse.
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A.3 Reproducability details

A.3.1 Hardware

All experiments were executed on single Titan RTX GPU with 24
gigabytes of GDDR6 memory.16 16 We would like to thank SURFsara for

providing the GPU nodes on the lisa
system.

A.3.2 Hyperparameter search results

Optimal learning rate and optimizer results are uniform within
setups for implicit and convolutional architectures:

• WaveGAN autoencoder and autodecoder:

– Learning rate: 1 × 10−4

– Optimizer: Adabelief

• π-GAN and IM-NET autoencoder and autodecoder:

– Learning rate: 1 × 10−5

– Optimizer: Adabelief

These hyperparameters are kept constant in all experiments.

Hyperparameter search details

Fixed hyperparameters
To minimize the hyperparameter space to explore, some param-

eters were fixed throughout the hyperparameter search based on
results in preliminary experiments:

• Batch size: 128

– Preliminary experiments indicated positive effects for larger
batch sizes. 128 was the maximum power of 2 that fitted in
memory on a single Titan RTX.

• Latent embedding size: 256

– WaveGAN showed significant performance degradation in
latent embedding sizes below 256 in preliminary experiments.

Hyperparameter search procedure

1. For implicit architectures; execute a ω0 or coordinate multiplier
search, with fixed learning rate at 1 × 10−5 and Adabelief17 as 17 Zhuang et al., AdaBelief Optimizer, 2020.
the optimizer18, for 200 epochs, using Bayesian Search19 with 18 A learning rate of 1 × 10−5 and

Adabelief were optimal in prelimiary
experiments.
19 Snoek et al., Practical Bayesian Optimization
of Machine Learning Algorithms, 2012.

Hyperband20 early stopping. For π-GAN decoder setups:

20 L. Li et al., Hyperband, 2018.

• ω0 first [1, 2000]

• ω0 hidden [1, 2000]

For IM-NET decoder setups:

• Coordinate multiplier [1, 3000]
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2. Grid search (with previously best found ω0 or coordinate multi-
plier, if applicable) for 5000 epochs over the following hyperpa-
rameters, three times:

(a) Learning rate: {1 × 103, 1 × 104, 1 × 105, 1 × 106}
(b) Optimizer: {Adam, Adabelief}

All ω0 optimization runs were executed for 5 hours, after which
the process was executed.

A.3.3 Baseline experiments

Encoder paramterization

In autoencoder setups we use a convolutional encoder parametrized
as follows:

1. Conv1d(1, 128, 320, 4)
2. ReLU()
3. MaxPool1d(4)
4. Conv1d(128, 128, 3)
5. ReLU()
6. MaxPool1d(4)
7. Conv1d(128, 256, 3)
8. ReLU()
9. MaxPool1d(4)
10. Conv1d(256, 512, 3)
11. ReLU()
12. MaxPool1d(4)
13. AvgPool1d(14)
14. Linear(512, 256)

Resulting in 714k parameters, roughly equivalent to the decoders. A
first-layer filter size of 320 is used, corresponding to 20ms in 16kHz
audio.

A.4 Additional results and observations

A.4.1 Baseline experiments

1. IM-NET autoencoder: best CSIG (background noise level) scores
for Speech Commands21. 21 Note that CSIG scores representing

background noise level in the Speech
Commands dataset are believed to
be better for lower scores, since CSIG
showed a positive correlation with
background noise level ratings in the
Speech Commands dataset. while for
CSIG representing sample quality in
NSYNTH datasets a higher score is bet-
ter, as in the original literature. Thus,
these results should be interpreted
with caution.

2. Autoencoder architectures:

(a) WaveGAN outperforms other architectures for the NSYNTH
diverse dataset.

(b) π-GAN outperforms other architectures for the NSYNTH
keyboard dataset, except for Multi resolution STFT MSE (back-
ground noise level).

(c) WaveGAN: MSE close to silence for Speech Commands
dataset.
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(d) π-GAN: best MSE for NSYNTH keyboard and Speech Com-
mands datasets.

A.4.2 Ablation experiments

CDPAM: Overall quality CSIG: Sample quality Multi STFT MSE: Noise
Architecture Diverse Keyboard Diverse Keyboard Diverse Keyboard

π-GAN 0.35 ± 0.24 0.48 ± 0.18 1.38 ± 1.84 -1.97 ± 2.45 0.06 ± 0.02 0.14 ± 0.04
- Concat middle 1.82 ± 0.0 1.6 ± 0.01 -8.32 ± 0.08 -10.19 ± 0.27 0.13 ± 0.0 0.1 ± 0.0
- Concat all 1.81 ± 0.02 1.6 ± 0.0 -8.41 ± 0.17 -10.77 ± 0.59 0.13 ± 0.0 0.1 ± 0.0

Silence 1.65 ± 0.0 1.77 ± 0.0 -1.31 ± 0.0 -4.62 ± 0.0 0.16 ± 0.00 0.16 ± 0.00
White noise 1.06 ± 0.27 1.06 ± 0.32 -5.43 ± 3.14 -9.31 ± 2.59 2.27 ± 0.06 2.32 ± 0.04

Table 1: Evaluation metrics CDPAM,
CSIG and multi resolution STFT MSE
scores of conditioning ablation setups
for NSYNTH datasets. For CDPAM
and multi resolution STFT MSE a lower
score is better, for CSIG representing
sample quality in NSYNTH datasets a
higher score is better. Silence and white
noise (µ = 0, σ = 1) scores reported for
reference.

Architecture LSD: Overall / Sample quality CSIG: Noise

π-GAN 0.27 ± 0.12 0.59 ± 1.26
- Concat middle 0.49 ± 0.0 -2.0 ± 0.04
- Concat all 0.49 ± 0.0 -1.55 ± 0.07

Silence 0.74 ± 0.0 -2.05 ± 0.0
White noise 7.27 ± 0.07 -1.24 ± 1.93

Table 2: LSD ×10 and CSIG scores of
all conditioning ablation setups for
the Speech Commands dataset. For
both metrics lower is better. Silence
and white noise (µ = 0, σ = 1) scores
reported for reference.

Architecture NSYNTH Diverse NSYNTH Keyboard Speech Commands

π-GAN 1.32 ± 0.3 4.48 ± 1.02 0.85 ± 0.01
- Concat middle 38.57 ± 0.0 49.13 ± 0.01 2.39 ± 0.0
- Concat all 38.58 ± 0.01 49.1 ± 0.0 2.39 ± 0.0

Silence 46.19 ± 0.0 78.74 ± 0.0 7.48 ± 0.0
White noise 1061.49 ± 13.56 1094.74 ± 12.03 1023.18 ± 11.56

Table 3: Mean and standard deviation
of MSE ×103 statistics of batches (128
samples) of synthesized samples in
the 5000th epoch of all models with
best performing hyperparameters in
conditioning ablation setups. Silence
and white noise (µ = 0, σ = 1) errors
reported for reference.

Figure 9: First 200 timepoints of a
waveform validated to be represen-
tative as described in section 5.9.1 of
the NSYNTH keyboard dataset and re-
constructions of conditioning ablation
setups.



APPENDIX 97

Figure 10: First 200 timepoints of a
waveform validated to be representa-
tive as described in section 5.9.1 of the
NSYNTH keyboard dataset and recon-
structions of latent mapping network
ablation setups.

Figure 11: First 200 timepoints of a
waveform validated to be represen-
tative as described in section 5.9.1 of
the NSYNTH keyboard dataset and re-
constructions of progressive activation
scaling setups.
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